Newer
Older
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
# avoid spurious: pytest.mark.parametrize is not callable
# pylint: disable=not-callable
import numpy.linalg as la
import sys
import pyopencl as cl
import pyopencl.array as cl_array
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from pyopencl.characterize import has_double_support, has_struct_arg_count_bug
from pyopencl.clrandom import RanluxGenerator, PhiloxGenerator, ThreefryGenerator
TO_REAL = {
np.dtype(np.complex64): np.float32,
np.dtype(np.complex128): np.float64
}
def general_clrand(queue, shape, dtype):
from pyopencl.clrandom import rand as clrand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = dtype.type(0).real.dtype
return clrand(queue, shape, real_dtype) + 1j*clrand(queue, shape, real_dtype)
else:
return clrand(queue, shape, dtype)
def make_random_array(queue, dtype, size):
from pyopencl.clrandom import rand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = TO_REAL[dtype]
return (rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
+ rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
* dtype.type(1j))
else:
return rand(queue, shape=(size,), dtype=dtype)
def test_basic_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand
size = 500
ary = (rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64)
+ rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64) * 1j)
assert la.norm((ary*c).get() - c*host_ary) < 1e-5 * la.norm(host_ary)
def test_mix_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
size = 10
dtypes = [
(np.float32, np.complex64),
#(np.int32, np.complex64),
]
dev = context.devices[0]
if has_double_support(dev) and has_struct_arg_count_bug(dev) == "apple":
dtypes.extend([
(np.float32, np.float64),
])
elif has_double_support(dev):
dtypes.extend([
(np.float32, np.float64),
(np.float32, np.complex128),
(np.float64, np.complex64),
(np.float64, np.complex128),
])
from operator import add, mul, sub, truediv
for op in [add, sub, mul, truediv, pow]:
for dtype_a0, dtype_b0 in dtypes:
for dtype_a, dtype_b in [
(dtype_a0, dtype_b0),
(dtype_b0, dtype_a0),
]:
for is_scalar_a, is_scalar_b in [
(False, False),
(False, True),
(True, False),
]:
if is_scalar_a:
ary_a = make_random_array(queue, dtype_a, 1).get()[0]
host_ary_a = ary_a
else:
ary_a = make_random_array(queue, dtype_a, size)
host_ary_a = ary_a.get()
if is_scalar_b:
ary_b = make_random_array(queue, dtype_b, 1).get()[0]
host_ary_b = ary_b
else:
ary_b = make_random_array(queue, dtype_b, size)
host_ary_b = ary_b.get()
print(op, dtype_a, dtype_b, is_scalar_a, is_scalar_b)
dev_result = op(ary_a, ary_b).get()
host_result = op(host_ary_a, host_ary_b)
if host_result.dtype != dev_result.dtype:
# This appears to be a numpy bug, where we get
# served a Python complex that is really a
# smaller numpy complex.
print("HOST_DTYPE: {} DEV_DTYPE: {}".format(
host_result.dtype, dev_result.dtype))
dev_result = dev_result.astype(host_result.dtype)
err = la.norm(host_result-dev_result)/la.norm(host_result)
print(host_result)
print(dev_result)
print(host_result - dev_result)
def test_pow_neg1_vs_inv(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
device = ctx.devices[0]
if not has_double_support(device):
if has_struct_arg_count_bug(device) == "apple":
from pytest import xfail
xfail("apple struct arg counting broken")
a_dev = make_random_array(queue, np.complex128, 20000)
res1 = (a_dev ** (-1)).get()
res2 = (1/a_dev).get()
ref = 1/a_dev.get()
assert la.norm(res1-ref, np.inf) / la.norm(ref) < 1e-13
assert la.norm(res2-ref, np.inf) / la.norm(ref) < 1e-13
def test_vector_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.Array(queue, 100, dtype=cltypes.float4)
a_gpu.fill(cltypes.make_float4(0.0, 0.0, 1.0, 0.0))
a_gpu = cl_array.zeros(queue, 100, dtype=cltypes.float4)
def test_zeros_large_array(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
size = 2**28 + 1
if dev.address_bits == 64 and dev.max_mem_alloc_size >= 8 * size:
# this shouldn't hang/cause errors
# see https://github.com/inducer/pyopencl/issues/395
a_gpu = cl_array.zeros(queue, (size,), dtype="float64")
# run a couple kernels to ensure no propagated runtime errors
a_gpu[...] = 1.
a_gpu = 2 * a_gpu - 3
else:
pass
def test_absrealimag(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
def real(x):
return x.real
def imag(x):
return x.imag
def conj(x):
return x.conj()
n = 111
for func in [abs, real, imag, conj]:
for dtype in [np.int32, np.float32, np.complex64]:
print(func, dtype)
a = -make_random_array(queue, dtype, n)
host_res = func(a.get())
dev_res = func(a).get()
correct = np.allclose(dev_res, host_res)
if not correct:
print(dev_res)
print(host_res)
print(dev_res-host_res)
assert correct
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def test_custom_type_zeros(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
if not (
queue._get_cl_version() >= (1, 2)
and cl.get_cl_header_version() >= (1, 2)):
pytest.skip("CL1.2 not available")
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
("pad", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "mmc_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 1000
z_dev = cl.array.zeros(queue, n, dtype=dtype)
z = z_dev.get()
assert np.array_equal(np.zeros(n, dtype), z)
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
def test_custom_type_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.characterize import has_struct_arg_count_bug
if has_struct_arg_count_bug(queue.device):
pytest.skip("device has LLVM arg counting bug")
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
("pad", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "mmc_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 1000
z_dev = cl.array.empty(queue, n, dtype=dtype)
z_dev.fill(np.zeros((), dtype))
z = z_dev.get()
assert np.array_equal(np.zeros(n, dtype), z)
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def test_custom_type_take_put(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "tp_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 100
z = np.empty(100, dtype)
z["cur_min"] = np.arange(n)
z["cur_max"] = np.arange(n)**2
z_dev = cl.array.to_device(queue, z)
ind = cl.array.arange(queue, n, step=3, dtype=np.int32)
z_ind_ref = z[ind.get()]
z_ind = z_dev[ind]
assert np.array_equal(z_ind.get(), z_ind_ref)
# {{{ operators
def test_rmul_yields_right_type(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
two_a = 2*a_gpu
assert isinstance(two_a, cl_array.Array)
two_a = np.float32(2)*a_gpu
assert isinstance(two_a, cl_array.Array)
def test_pow_array(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, a_gpu).get()
assert (np.abs(a ** a - result) < 3e-3).all()
assert (np.abs(pow(a, a) - result) < 3e-3).all()
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, 2).get()
assert (np.abs(a ** 2 - result) < 1e-3).all()
def test_multiply(ctx_factory):
"""Test the muliplication of an array with a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
for sz in [10, 50000]:
for dtype, scalars in [
(np.float32, [2]),
(np.complex64, [2j]),
]:
a_gpu = make_random_array(queue, dtype, sz)
a = a_gpu.get()
a_mult = (scalar * a_gpu).get()
assert (a * scalar == a_mult).all()
def test_multiply_array(ctx_factory):
"""Test the multiplication of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, a)
def test_addition_array(ctx_factory):
"""Test the addition of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
def test_addition_scalar(ctx_factory):
"""Test the addition of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
@pytest.mark.parametrize(("dtype_a", "dtype_b"),
[
(np.float32, np.float32),
(np.float32, np.int32),
(np.int32, np.int32),
(np.int64, np.int32),
(np.int64, np.uint32),
])
def test_subtract_array(ctx_factory, dtype_a, dtype_b):
"""Test the substraction of two arrays."""
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(dtype_a)
60, 70, 80, 90, 100]).astype(dtype_b)
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
result = (a_gpu - b_gpu).get()
assert (a - b == result).all()
result = (b_gpu - a_gpu).get()
assert (b - a == result).all()
def test_substract_scalar(ctx_factory):
"""Test the substraction of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu - 7).get()
assert (a - 7 == result).all()
result = (7 - a_gpu).get()
assert (7 - a == result).all()
def test_divide_scalar(ctx_factory):
"""Test the division of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
if queue.device.platform.name == "Apple":
pytest.xfail("Apple CL compiler crashes on this.")
dtypes = (np.uint8, np.uint16, np.uint32,
np.int8, np.int16, np.int32,
np.float32, np.complex64)
from pyopencl.characterize import has_double_support
if has_double_support(queue.device):
dtypes = dtypes + (np.float64, np.complex128)
from itertools import product
for dtype_a, dtype_s in product(dtypes, repeat=2):
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(dtype_a)
s = dtype_s(40)
a_gpu = cl_array.to_device(queue, a)
b = a / s
b_gpu = a_gpu / s
assert (np.abs(b_gpu.get() - b) < 1e-3).all()
assert b_gpu.dtype is b.dtype
c = s / a
c_gpu = s / a_gpu
assert (np.abs(c_gpu.get() - c) < 1e-3).all()
assert c_gpu.dtype is c.dtype
def test_divide_array(ctx_factory):
"""Test the division of an array and a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
dtypes = (np.float32, np.complex64)
from pyopencl.characterize import has_double_support
if has_double_support(queue.device):
dtypes = dtypes + (np.float64, np.complex128)
from itertools import product
for dtype_a, dtype_b in product(dtypes, repeat=2):
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(dtype_a)
b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(dtype_b)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
c = a / b
c_gpu = (a_gpu / b_gpu)
assert (np.abs(c_gpu.get() - c) < 1e-3).all()
assert c_gpu.dtype is c.dtype
d = b / a
d_gpu = (b_gpu / a_gpu)
assert (np.abs(d_gpu.get() - d) < 1e-3).all()
assert d_gpu.dtype is d.dtype
def test_divide_inplace_scalar(ctx_factory):
"""Test inplace division of arrays and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
if queue.device.platform.name == "Apple":
pytest.xfail("Apple CL compiler crashes on this.")
dtypes = (np.uint8, np.uint16, np.uint32,
np.int8, np.int16, np.int32,
np.float32, np.complex64)
from pyopencl.characterize import has_double_support
if has_double_support(queue.device):
dtypes = dtypes + (np.float64, np.complex128)
from itertools import product
for dtype_a, dtype_s in product(dtypes, repeat=2):
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(dtype_a)
s = dtype_s(40)
a_gpu = cl_array.to_device(queue, a)
# ensure the same behavior as inplace numpy.ndarray division
try:
a /= s
except TypeError:
with np.testing.assert_raises(TypeError):
a_gpu /= s
else:
a_gpu /= s
assert (np.abs(a_gpu.get() - a) < 1e-3).all()
assert a_gpu.dtype is a.dtype
"""Test inplace division of arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
dtypes = (np.uint8, np.uint16, np.uint32,
np.int8, np.int16, np.int32,
np.float32, np.complex64)
from pyopencl.characterize import has_double_support
if has_double_support(queue.device):
dtypes = dtypes + (np.float64, np.complex128)
from itertools import product
for dtype_a, dtype_b in product(dtypes, repeat=2):
print(dtype_a, dtype_b)
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(dtype_a)
b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(dtype_b)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
# ensure the same behavior as inplace numpy.ndarray division
try:
a_gpu /= b_gpu
except TypeError:
# pass for now, as numpy casts differently for in-place and out-place
# true_divide
pass
# with np.testing.assert_raises(TypeError):
# a /= b
else:
a /= b
assert (np.abs(a_gpu.get() - a) < 1e-3).all()
assert a_gpu.dtype is a.dtype
if _PYPY:
pytest.xfail("numpypy: missing bitwise ops")
context = ctx_factory()
queue = cl.CommandQueue(context)
from itertools import product
dtypes = [np.dtype(t) for t in (np.int64, np.int32, np.int16, np.int8)]
from pyopencl.clrandom import rand as clrand
for a_dtype, b_dtype in product(dtypes, dtypes):
int32_min = np.iinfo(np.int32).min
int32_max = np.iinfo(np.int32).max
a_dev = clrand(
queue, (ary_len,), a=int32_min, b=1+int32_max, dtype=np.int64
).astype(a_dtype)
queue, (ary_len,), a=int32_min, b=1+int32_max, dtype=np.int64
).astype(b_dtype)
a = a_dev.get()
b = b_dev.get()
s = int(clrand(queue, (), a=int32_min, b=1+int32_max, dtype=np.int64)
.astype(b_dtype).get())
import operator as o
for op in [o.and_, o.or_, o.xor]:
res_dev = op(a_dev, b_dev)
res = op(a, b)
assert (res_dev.get() == res).all()
res_dev = op(a_dev, s)
res = op(a, s)
assert (res_dev.get() == res).all()
res_dev = op(s, b_dev)
res = op(s, b)
assert (res_dev.get() == res).all()
for op in [o.iand, o.ior, o.ixor]:
res_dev = a_dev.copy()
op_res = op(res_dev, b_dev)
assert op_res is res_dev
res = a.copy()
op(res, b)
assert (res_dev.get() == res).all()
res_dev = a_dev.copy()
op_res = op(res_dev, s)
assert op_res is res_dev
res = a.copy()
op(res, s)
assert (res_dev.get() == res).all()
# Test unary ~
res_dev = ~a_dev
assert (res_dev.get() == res).all()
@pytest.mark.parametrize("rng_class",
[RanluxGenerator, PhiloxGenerator, ThreefryGenerator])
@pytest.mark.parametrize("ary_size", [300, 301, 302, 303, 10007, 1000000])
def test_random_float_in_range(ctx_factory, rng_class, ary_size, plot_hist=False):
context = ctx_factory()
queue = cl.CommandQueue(context)
device = queue.device
if device.platform.vendor == "The pocl project" \
and device.type & cl.device_type.GPU \
and rng_class is RanluxGenerator:
pytest.xfail("ranlux test fails on POCL + Nvidia,"
"at least the Titan V, as of pocl 1.6, 2021-01-20")
if has_double_support(context.devices[0]):
if rng_class is RanluxGenerator:
gen = rng_class(queue, 5120)
else:
gen = rng_class(context)
for dtype in dtypes:
print(dtype)
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran)
if plot_hist:
import matplotlib.pyplot as pt
pt.hist(ran.get(), 30)
pt.show()
assert (0 <= ran.get()).all()
assert (ran.get() <= 1).all()
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran, a=4, b=7)
ran_host = ran.get()
for cond in [4 <= ran_host, ran_host <= 7]:
good = cond.all()
if not good:
print(np.where(~cond))
print(ran_host[~cond])
assert good
ran = gen.normal(queue, ary_size, dtype, mu=10, sigma=3)
if plot_hist:
import matplotlib.pyplot as pt
pt.hist(ran.get(), 30)
pt.show()
@pytest.mark.parametrize("dtype", [np.int32, np.int64])
@pytest.mark.parametrize("rng_class",
[RanluxGenerator, PhiloxGenerator, ThreefryGenerator])
def test_random_int_in_range(ctx_factory, rng_class, dtype, plot_hist=False):
context = ctx_factory()
queue = cl.CommandQueue(context)
if queue.device.platform.vendor == "The pocl project" \
and queue.device.type & cl.device_type.GPU \
and rng_class is RanluxGenerator:
pytest.xfail("ranlux test fails on POCL + Nvidia,"
"at least the Titan V, as of pocl 1.6, 2021-01-20")
if rng_class is RanluxGenerator:
gen = rng_class(queue, 5120)
else:
gen = rng_class(context)
# if (dtype == np.int64
# and context.devices[0].platform.vendor.startswith("Advanced Micro")):
# pytest.xfail("AMD miscompiles 64-bit RNG math")
ran = gen.uniform(queue, (10000007,), dtype, a=200, b=300).get()
assert (200 <= ran).all()
assert (ran < 300).all()
print(np.min(ran), np.max(ran))
assert np.max(ran) > 295
if plot_hist:
from matplotlib import pyplot as pt
pt.hist(ran)
pt.show()
def test_numpy_integer_shape(ctx_factory):
pass
else:
from pytest import skip
skip("numpy implementation does not handle scalar correctly.")
context = ctx_factory()
queue = cl.CommandQueue(context)
cl_array.empty(queue, np.int32(17), np.float32)
cl_array.empty(queue, (np.int32(17), np.int32(17)), np.float32)
def test_len(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_cpu = cl_array.to_device(queue, a)
assert len(a_cpu) == 10
def test_stride_preservation(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.random.rand(3, 3)
at = a.T
print(at.flags.f_contiguous, at.flags.c_contiguous)
at_gpu = cl_array.to_device(queue, at)
print(at_gpu.flags.f_contiguous, at_gpu.flags.c_contiguous)
assert np.allclose(at_gpu.get(), at)
context = ctx_factory()
queue = cl.CommandQueue(context)
def make_nan_contaminated_vector(size):
shape = (size,)
a = np.random.randn(*shape).astype(np.float32)
from random import randrange
for i in range(size // 10):
a[randrange(0, size)] = float("nan")
size = 1 << 20
a = make_nan_contaminated_vector(size)
a_gpu = cl_array.to_device(queue, a)
b = make_nan_contaminated_vector(size)
b_gpu = cl_array.to_device(queue, b)
ab = a * b
ab_gpu = (a_gpu * b_gpu).get()
assert (np.isnan(ab) == np.isnan(ab_gpu)).all()
def test_mem_pool_with_arrays(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
mem_pool = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool)
b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000
assert a_dev.allocator is mem_pool
assert b_dev.allocator is mem_pool
def test_view(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# same dtype
view = a_dev.view()
assert view.shape == a_dev.shape and view.dtype == a_dev.dtype
# larger dtype
view = a_dev.view(np.complex64)
assert view.shape == (8, 8) and view.dtype == np.complex64
# smaller dtype
view = a_dev.view(np.int16)
assert view.shape == (8, 32) and view.dtype == np.int16
def test_diff(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
ary_len = 20000
a_dev = clrand(queue, (ary_len,), dtype=np.float32)
cl.array.diff(a_dev).get() - np.diff(a))
def test_copy(ctx_factory):
context = ctx_factory()
queue1 = cl.CommandQueue(context)
queue2 = cl.CommandQueue(context)
# Test copy
arr = cl.array.zeros(queue1, 100, np.int32)
arr_copy = arr.copy()
assert (arr == arr_copy).all().get()
assert arr.data != arr_copy.data
assert arr_copy.queue is queue1
# Test queue association
arr_copy = arr.copy(queue=queue2)
assert arr_copy.queue is queue2
assert arr_copy.queue is None
arr_copy = arr.with_queue(None).copy(queue=queue1)
assert arr_copy.queue is queue1
def test_slice(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: spurious as_strided failure")
context = ctx_factory()
queue = cl.CommandQueue(context)
ary_len = 20000
a_gpu = clrand(queue, (ary_len,), dtype=tp)
b_gpu = clrand(queue, (ary_len,), dtype=tp)
for i in range(20):
start = randrange(ary_len)
end = randrange(start, ary_len)
a_gpu_slice = tp(2)*a_gpu[start:end]
a_slice = tp(2)*a[start:end]
assert la.norm(a_gpu_slice.get() - a_slice) == 0
start = randrange(ary_len)
end = randrange(start, ary_len)
a_gpu[start:end] = tp(2)*b[start:end]
a[start:end] = tp(2)*b[start:end]
assert la.norm(a_gpu.get() - a) == 0
for i in range(20):
start = randrange(ary_len)
end = randrange(start, ary_len)
a_gpu[start:end] = tp(2)*b_gpu[start:end]
a[start:end] = tp(2)*b[start:end]
def test_concatenate(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand