Newer
Older
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy.linalg as la
import sys
import pytools.test
from pytools import memoize
def have_cl():
try:
import pyopencl
return True
except:
return False
if have_cl():
import pyopencl as cl
import pyopencl.array as cl_array
import pyopencl.tools as cl_tools
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
from pyopencl.characterize import has_double_support
TO_REAL = {
np.dtype(np.complex64): np.float32,
np.dtype(np.complex128): np.float64
}
def general_clrand(queue, shape, dtype):
from pyopencl.clrandom import rand as clrand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = dtype.type(0).real.dtype
return clrand(queue, shape, real_dtype) + 1j*clrand(queue, shape, real_dtype)
else:
return clrand(queue, shape, dtype)
def make_random_array(queue, dtype, size):
from pyopencl.clrandom import rand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = TO_REAL[dtype]
return (rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
+ rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
* dtype.type(1j))
else:
return rand(queue, shape=(size,), dtype=dtype)
@pytools.test.mark_test.opencl
def test_basic_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand
size = 500
ary = (rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64)
+ rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64) * 1j)
assert la.norm((ary*c).get() - c*host_ary) < 1e-5 * la.norm(host_ary)
@pytools.test.mark_test.opencl
def test_mix_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
size = 10
dtypes = [
(np.float32, np.complex64),
#(np.int32, np.complex64),
]
if has_double_support(context.devices[0]):
dtypes.extend([
(np.float32, np.float64),
(np.float32, np.complex128),
(np.float64, np.complex64),
(np.float64, np.complex128),
])
from operator import add, mul, sub, truediv
for op in [add, sub, mul, truediv, pow]:
for dtype_a0, dtype_b0 in dtypes:
for dtype_a, dtype_b in [
(dtype_a0, dtype_b0),
(dtype_b0, dtype_a0),
]:
for is_scalar_a, is_scalar_b in [
(False, False),
(False, True),
(True, False),
]:
if is_scalar_a:
ary_a = make_random_array(queue, dtype_a, 1).get()[0]
host_ary_a = ary_a
else:
ary_a = make_random_array(queue, dtype_a, size)
host_ary_a = ary_a.get()
if is_scalar_b:
ary_b = make_random_array(queue, dtype_b, 1).get()[0]
host_ary_b = ary_b
else:
ary_b = make_random_array(queue, dtype_b, size)
host_ary_b = ary_b.get()
print(op, dtype_a, dtype_b, is_scalar_a, is_scalar_b)
dev_result = op(ary_a, ary_b).get()
host_result = op(host_ary_a, host_ary_b)
if host_result.dtype != dev_result.dtype:
# This appears to be a numpy bug, where we get
# served a Python complex that is really a
# smaller numpy complex.
print("HOST_DTYPE: %s DEV_DTYPE: %s" % (
host_result.dtype, dev_result.dtype))
dev_result = dev_result.astype(host_result.dtype)
err = la.norm(host_result-dev_result)/la.norm(host_result)
print(host_result)
print(dev_result)
print(host_result - dev_result)
@pytools.test.mark_test.opencl
def test_pow_neg1_vs_inv(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
device = ctx.devices[0]
if not has_double_support(device):
skip("double precision not supported on %s" % device)
a_dev = make_random_array(queue, np.complex128, 20000)
res1 = (a_dev ** (-1)).get()
res2 = (1/a_dev).get()
ref = 1/a_dev.get()
assert la.norm(res1-ref, np.inf) / la.norm(ref) < 1e-13
assert la.norm(res2-ref, np.inf) / la.norm(ref) < 1e-13
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
def test_vector_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.Array(queue, 100, dtype=cl_array.vec.float4)
a_gpu.fill(cl_array.vec.make_float4(0.0, 0.0, 1.0, 0.0))
a = a_gpu.get()
assert a.dtype is cl_array.vec.float4
a_gpu = cl_array.zeros(queue, 100, dtype=cl_array.vec.float4)
@pytools.test.mark_test.opencl
def test_absrealimag(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
def real(x): return x.real
def imag(x): return x.imag
def conj(x): return x.conj()
n = 111
for func in [abs, real, imag, conj]:
for dtype in [np.int32, np.float32, np.complex64]:
print(func, dtype)
a = -make_random_array(queue, dtype, n)
host_res = func(a.get())
dev_res = func(a).get()
correct = np.allclose(dev_res, host_res)
if not correct:
print(dev_res)
print(host_res)
print(dev_res-host_res)
assert correct
# }}}
# {{{ operands
@pytools.test.mark_test.opencl
def test_pow_array(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, a_gpu).get()
assert (np.abs(a ** a - result) < 1e-3).all()
result = (a_gpu ** a_gpu).get()
assert (np.abs(pow(a, a) - result) < 1e-3).all()
@pytools.test.mark_test.opencl
def test_pow_number(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, 2).get()
assert (np.abs(a ** 2 - result) < 1e-3).all()
@pytools.test.mark_test.opencl
def test_multiply(ctx_factory):
"""Test the muliplication of an array with a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
for sz in [10, 50000]:
for dtype, scalars in [
a_gpu = make_random_array(queue, dtype, sz)
a = a_gpu.get()
a_mult = (scalar * a_gpu).get()
assert (a * scalar == a_mult).all()
def test_multiply_array(ctx_factory):
"""Test the multiplication of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, a)
@pytools.test.mark_test.opencl
def test_addition_array(ctx_factory):
"""Test the addition of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
@pytools.test.mark_test.opencl
def test_addition_scalar(ctx_factory):
"""Test the addition of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
@pytools.test.mark_test.opencl
def test_substract_array(ctx_factory):
"""Test the substraction of two arrays."""
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
b = np.array([10, 20, 30, 40, 50,
60, 70, 80, 90, 100]).astype(np.float32)
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
result = (a_gpu - b_gpu).get()
assert (a - b == result).all()
result = (b_gpu - a_gpu).get()
assert (b - a == result).all()
@pytools.test.mark_test.opencl
def test_substract_scalar(ctx_factory):
"""Test the substraction of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu - 7).get()
assert (a - 7 == result).all()
result = (7 - a_gpu).get()
assert (7 - a == result).all()
@pytools.test.mark_test.opencl
def test_divide_scalar(ctx_factory):
"""Test the division of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu / 2).get()
assert (a / 2 == result).all()
result = (2 / a_gpu).get()
assert (np.abs(2 / a - result) < 1e-5).all()
@pytools.test.mark_test.opencl
def test_divide_array(ctx_factory):
"""Test the division of an array and a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(np.float32)
b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
a_divide = (a_gpu / b_gpu).get()
assert (np.abs(a / b - a_divide) < 1e-3).all()
a_divide = (b_gpu / a_gpu).get()
assert (np.abs(b / a - a_divide) < 1e-3).all()
@pytools.test.mark_test.opencl
def test_random(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import RanluxGenerator
if has_double_support(context.devices[0]):
for ary_size in [300, 301, 302, 303, 10007]:
for dtype in dtypes:
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran)
assert (0 < ran.get()).all()
assert (ran.get() < 1).all()
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran, a=4, b=7)
assert (4 < ran.get()).all()
assert (ran.get() < 7).all()
ran = gen.normal(queue, (10007,), dtype, mu=4, sigma=3)
ran = gen.uniform(queue, (10000007,), dtype, a=200, b=300)
assert (200 <= ran.get()).all()
assert (ran.get() < 300).all()
#from matplotlib import pyplot as pt
#pt.hist(ran.get())
#pt.show()
@pytools.test.mark_test.opencl
def test_numpy_integer_shape(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
cl_array.empty(queue, np.int32(17), np.float32)
cl_array.empty(queue, (np.int32(17), np.int32(17)), np.float32)
@pytools.test.mark_test.opencl
def test_len(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_cpu = cl_array.to_device(queue, a)
assert len(a_cpu) == 10
def test_stride_preservation(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
print(AT.flags.f_contiguous, AT.flags.c_contiguous)
AT_GPU = cl_array.to_device(queue, AT)
print(AT_GPU.flags.f_contiguous, AT_GPU.flags.c_contiguous)
@pytools.test.mark_test.opencl
context = ctx_factory()
queue = cl.CommandQueue(context)
def make_nan_contaminated_vector(size):
shape = (size,)
a = np.random.randn(*shape).astype(np.float32)
from random import randrange
for i in range(size // 10):
a[randrange(0, size)] = float('nan')
return a
size = 1 << 20
a = make_nan_contaminated_vector(size)
a_gpu = cl_array.to_device(queue, a)
b = make_nan_contaminated_vector(size)
b_gpu = cl_array.to_device(queue, b)
ab = a * b
ab_gpu = (a_gpu * b_gpu).get()
assert (np.isnan(ab) == np.isnan(ab_gpu)).all()
@pytools.test.mark_test.opencl
def test_mem_pool_with_arrays(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
mem_pool = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool)
b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000
assert a_dev.allocator is mem_pool
assert b_dev.allocator is mem_pool
@pytools.test.mark_test.opencl
def test_view(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# same dtype
view = a_dev.view()
assert view.shape == a_dev.shape and view.dtype == a_dev.dtype
# larger dtype
view = a_dev.view(np.complex64)
assert view.shape == (8, 8) and view.dtype == np.complex64
# smaller dtype
view = a_dev.view(np.int16)
assert view.shape == (8, 32) and view.dtype == np.int16
context = ctx_factory()
queue = cl.CommandQueue(context)
from random import randrange
for i in range(200):
start = randrange(l)
end = randrange(start, l)
a_gpu_slice = a_gpu[start:end]
a_slice = a[start:end]
assert la.norm(a_gpu_slice.get() - a_slice) == 0
# make sure that import failures get reported, instead of skipping the
# tests.
import pyopencl as cl
import sys
if len(sys.argv) > 1:
from py.test.cmdline import main