Skip to content
Snippets Groups Projects
test_array.py 16.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • #! /usr/bin/env python
    
    __copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    import numpy as np
    
    import numpy.linalg as la
    import sys
    import pytools.test
    
    
    
    def have_cl():
        try:
            import pyopencl
            return True
        except:
            return False
    
    if have_cl():
        import pyopencl as cl
    
        import pyopencl.array as cl_array
        import pyopencl.tools as cl_tools
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pyopencl.tools import pytest_generate_tests_for_pyopencl \
                as pytest_generate_tests
    
        from pyopencl.characterize import has_double_support
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    # {{{ helpers
    
    TO_REAL = {
            np.dtype(np.complex64): np.float32,
            np.dtype(np.complex128): np.float64
            }
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    def general_clrand(queue, shape, dtype):
        from pyopencl.clrandom import rand as clrand
    
        dtype = np.dtype(dtype)
        if dtype.kind == "c":
            real_dtype = dtype.type(0).real.dtype
            return clrand(queue, shape, real_dtype) + 1j*clrand(queue, shape, real_dtype)
        else:
            return clrand(queue, shape, dtype)
    
    
    
    def make_random_array(queue, dtype, size):
        from pyopencl.clrandom import rand
    
        dtype = np.dtype(dtype)
        if dtype.kind == "c":
            real_dtype = TO_REAL[dtype]
            return (rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
                    + dtype.type(1j)
                    * rand(queue, shape=(size,), dtype=real_dtype).astype(dtype))
        else:
            return rand(queue, shape=(size,), dtype=dtype)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    # }}}
    
    # {{{ dtype-related
    
    
    @pytools.test.mark_test.opencl
    def test_basic_complex(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand
    
        size = 500
    
        ary =  (rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64)
                + 1j* rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64))
        c = np.complex64(5+7j)
    
    
        host_ary = ary.get()
        assert la.norm((c*ary).get() - c*host_ary) < 1e-5 * la.norm(host_ary)
    
    
    @pytools.test.mark_test.opencl
    def test_mix_complex(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        size = 10
    
        dtypes = [
                (np.float32, np.complex64),
                #(np.int32, np.complex64),
                ]
    
        if has_double_support(context.devices[0]):
            dtypes.extend([
                (np.float32, np.float64),
                (np.float32, np.complex128),
                (np.float64, np.complex64),
                (np.float64, np.complex128),
                ])
    
    
        from operator import add, mul, sub, truediv
        for op in [add, sub, mul, truediv, pow]:
    
            for dtype_a0, dtype_b0 in dtypes:
                for dtype_a, dtype_b in [
                        (dtype_a0, dtype_b0),
                        (dtype_b0, dtype_a0),
                        ]:
                    for is_scalar_a, is_scalar_b in [
                            (False, False),
                            (False, True),
                            (True, False),
                            ]:
                        if is_scalar_a:
                            ary_a = make_random_array(queue, dtype_a, 1).get()[0]
                            host_ary_a = ary_a
                        else:
                            ary_a = make_random_array(queue, dtype_a, size)
                            host_ary_a = ary_a.get()
    
                        if is_scalar_b:
                            ary_b = make_random_array(queue, dtype_b, 1).get()[0]
                            host_ary_b = ary_b
                        else:
                            ary_b = make_random_array(queue, dtype_b, size)
                            host_ary_b = ary_b.get()
    
    
                        print(op, dtype_a, dtype_b, is_scalar_a, is_scalar_b)
    
                        dev_result = op(ary_a, ary_b).get()
                        host_result = op(host_ary_a, host_ary_b)
    
                        if host_result.dtype != dev_result.dtype:
                            # This appears to be a numpy bug, where we get
                            # served a Python complex that is really a
                            # smaller numpy complex.
    
    
                            print("HOST_DTYPE: %s DEV_DTYPE: %s" % (
                                    host_result.dtype, dev_result.dtype))
    
    
                            dev_result = dev_result.astype(host_result.dtype)
    
    
                        err = la.norm(host_result-dev_result)/la.norm(host_result)
    
                        correct = err < 1e-5
    
                            print(host_result)
                            print(dev_result)
                            print(host_result - dev_result)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    @pytools.test.mark_test.opencl
    def test_pow_neg1_vs_inv(ctx_factory):
        ctx = ctx_factory()
        queue = cl.CommandQueue(ctx)
    
        device = ctx.devices[0]
        if not has_double_support(device):
            from py.test import skip
            skip("double precision not supported on %s" % device)
    
        a_dev = make_random_array(queue, np.complex128, 20000)
    
        res1 = (a_dev ** (-1)).get()
        res2 = (1/a_dev).get()
        ref = 1/a_dev.get()
    
        assert la.norm(res1-ref, np.inf) / la.norm(ref) < 1e-13
        assert la.norm(res2-ref, np.inf) / la.norm(ref) < 1e-13
    
    
    @pytools.test.mark_test.opencl
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    def test_vector_fill(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        a_gpu = cl_array.Array(queue, 100, dtype=cl_array.vec.float4)
        a_gpu.fill(cl_array.vec.make_float4(0.0, 0.0, 1.0, 0.0))
        a = a_gpu.get()
        assert a.dtype is cl_array.vec.float4
    
        a_gpu = cl_array.zeros(queue, 100, dtype=cl_array.vec.float4)
    
    @pytools.test.mark_test.opencl
    def test_absrealimag(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        def real(x): return x.real
        def imag(x): return x.imag
        def conj(x): return x.conj()
    
        n = 111
        for func in [abs, real, imag, conj]:
            for dtype in [np.int32, np.float32, np.complex64]:
                print(func, dtype)
                a = -make_random_array(queue, dtype, n)
    
                host_res = func(a.get())
                dev_res = func(a).get()
    
                correct = np.allclose(dev_res, host_res)
                if not correct:
                    print(dev_res)
                    print(host_res)
                    print(dev_res-host_res)
                assert correct
    
    # }}}
    
    # {{{ operands
    
    @pytools.test.mark_test.opencl
    def test_pow_array(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
        a_gpu = cl_array.to_device(queue, a)
    
        result = pow(a_gpu, a_gpu).get()
        assert (np.abs(a ** a - result) < 1e-3).all()
    
        result = (a_gpu ** a_gpu).get()
        assert (np.abs(pow(a, a) - result) < 1e-3).all()
    
    
    @pytools.test.mark_test.opencl
    def test_pow_number(ctx_factory):
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        a_gpu = cl_array.to_device(queue, a)
    
        result = pow(a_gpu, 2).get()
        assert (np.abs(a ** 2 - result) < 1e-3).all()
    
    
    
    @pytools.test.mark_test.opencl
    
        """Test the muliplication of an array with a scalar. """
    
    
        queue = cl.CommandQueue(context)
    
        for sz in [10, 50000]:
            for dtype, scalars in [
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                (np.float32, [2]),
    
                (np.complex64, [2j]),
    
                ]:
                for scalar in scalars:
    
                    a_gpu = make_random_array(queue, dtype, sz)
                    a = a_gpu.get()
                    a_mult = (scalar * a_gpu).get()
    
                    assert (a * scalar == a_mult).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
    
    
    @pytools.test.mark_test.opencl
    
    def test_multiply_array(ctx_factory):
    
        """Test the multiplication of two arrays."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
        b_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_squared = (b_gpu * a_gpu).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert (a * a == a_squared).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_addition_array(ctx_factory):
    
        """Test the addition of two arrays."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_added = (a_gpu + a_gpu).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert (a + a == a_added).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_addition_scalar(ctx_factory):
    
        """Test the addition of an array and a scalar."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_added = (7 + a_gpu).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert (7 + a == a_added).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_substract_array(ctx_factory):
    
        """Test the substraction of two arrays."""
        #test data
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
        b = np.array([10, 20, 30, 40, 50,
                      60, 70, 80, 90, 100]).astype(np.float32)
    
        queue = cl.CommandQueue(context)
    
    
        a_gpu = cl_array.to_device(queue, a)
        b_gpu = cl_array.to_device(queue, b)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (a_gpu - b_gpu).get()
        assert (a - b == result).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (b_gpu - a_gpu).get()
        assert (b - a == result).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_substract_scalar(ctx_factory):
    
        """Test the substraction of an array and a scalar."""
    
    
        queue = cl.CommandQueue(context)
    
        #test data
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
    
        #convert a to a gpu object
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (a_gpu - 7).get()
        assert (a - 7 == result).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (7 - a_gpu).get()
        assert (7 - a == result).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_divide_scalar(ctx_factory):
    
        """Test the division of an array and a scalar."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (a_gpu / 2).get()
        assert (a / 2 == result).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (2 / a_gpu).get()
        assert (np.abs(2 / a - result) < 1e-5).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_divide_array(ctx_factory):
    
        """Test the division of an array and a scalar. """
    
    
        queue = cl.CommandQueue(context)
    
        #test data
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(np.float32)
        b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
        b_gpu = cl_array.to_device(queue, b)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_divide = (a_gpu / b_gpu).get()
        assert (np.abs(a / b - a_divide) < 1e-3).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_divide = (b_gpu / a_gpu).get()
        assert (np.abs(b / a - a_divide) < 1e-3).all()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    # }}}
    
    # {{{ RNG
    
    
    @pytools.test.mark_test.opencl
    
    def test_random(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
        from pyopencl.clrandom import RanluxGenerator
    
    
        if has_double_support(context.devices[0]):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float32, np.float64]
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float32]
    
        gen = RanluxGenerator(queue, 5120)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        for ary_size in [300, 301, 302, 303, 10007]:
            for dtype in dtypes:
                ran = cl_array.zeros(queue, ary_size, dtype)
                gen.fill_uniform(ran)
                assert (0 < ran.get()).all()
                assert (ran.get() < 1).all()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                gen.synchronize(queue)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                ran = cl_array.zeros(queue, ary_size, dtype)
                gen.fill_uniform(ran, a=4, b=7)
                assert (4 < ran.get()).all()
                assert (ran.get() < 7).all()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                ran = gen.normal(queue, (10007,), dtype, mu=4, sigma=3)
    
    
        dtypes = [np.int32]
    
        for dtype in dtypes:
    
            ran = gen.uniform(queue, (10000007,), dtype, a=200, b=300)
            assert (200 <= ran.get()).all()
            assert (ran.get() < 300).all()
            #from matplotlib import pyplot as pt
            #pt.hist(ran.get())
            #pt.show()
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    # }}}
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    # {{{ misc
    
    
    @pytools.test.mark_test.opencl
    def test_numpy_integer_shape(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        cl_array.empty(queue, np.int32(17), np.float32)
        cl_array.empty(queue, (np.int32(17), np.int32(17)), np.float32)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    @pytools.test.mark_test.opencl
    def test_len(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
        a_cpu = cl_array.to_device(queue, a)
        assert len(a_cpu) == 10
    
    
    @pytools.test.mark_test.opencl
    
    def test_stride_preservation(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        A = np.random.rand(3, 3)
    
        print(AT.flags.f_contiguous, AT.flags.c_contiguous)
    
        AT_GPU = cl_array.to_device(queue, AT)
    
        print(AT_GPU.flags.f_contiguous, AT_GPU.flags.c_contiguous)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert np.allclose(AT_GPU.get(), AT)
    
    @pytools.test.mark_test.opencl
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    def test_nan_arithmetic(ctx_factory):
    
        queue = cl.CommandQueue(context)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        def make_nan_contaminated_vector(size):
            shape = (size,)
            a = np.random.randn(*shape).astype(np.float32)
            from random import randrange
            for i in range(size // 10):
                a[randrange(0, size)] = float('nan')
            return a
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        size = 1 << 20
    
        a = make_nan_contaminated_vector(size)
        a_gpu = cl_array.to_device(queue, a)
        b = make_nan_contaminated_vector(size)
        b_gpu = cl_array.to_device(queue, b)
    
        ab = a * b
        ab_gpu = (a_gpu * b_gpu).get()
    
        assert (np.isnan(ab) == np.isnan(ab_gpu)).all()
    
    @pytools.test.mark_test.opencl
    def test_mem_pool_with_arrays(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        mem_pool = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
    
        a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool)
    
        b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000
    
        result = cl_array.dot(a_dev, b_dev)
        assert a_dev.allocator is mem_pool
        assert b_dev.allocator is mem_pool
        assert result.allocator is mem_pool
    
    
    @pytools.test.mark_test.opencl
    def test_view(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        a = np.arange(128).reshape(8, 16).astype(np.float32)
        a_dev = cl_array.to_device(queue, a)
    
        # same dtype
        view = a_dev.view()
        assert view.shape == a_dev.shape and view.dtype == a_dev.dtype
    
        # larger dtype
        view = a_dev.view(np.complex64)
        assert view.shape == (8, 8) and view.dtype == np.complex64
    
        # smaller dtype
        view = a_dev.view(np.int16)
        assert view.shape == (8, 32) and view.dtype == np.int16
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    # }}}
    
    @pytools.test.mark_test.opencl
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    def no_test_slice(ctx_factory):
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
    
        from pyopencl.clrandom import rand as clrand
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    
        l = 20000
        a_gpu = clrand(queue, (l,))
    
        a = a_gpu.get()
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from random import randrange
        for i in range(200):
            start = randrange(l)
            end = randrange(start, l)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            a_gpu_slice = a_gpu[start:end]
            a_slice = a[start:end]
    
            assert la.norm(a_gpu_slice.get() - a_slice) == 0
    
    if __name__ == "__main__":
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        # make sure that import failures get reported, instead of skipping the
        # tests.
    
        import pyopencl as cl
    
        import sys
        if len(sys.argv) > 1:
    
            exec(sys.argv[1])
    
        else:
            from py.test.cmdline import main
            main([__file__])
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    # vim: filetype=pyopencl:fdm=marker