Skip to content
Snippets Groups Projects
test_array.py 20.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • #! /usr/bin/env python
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    import numpy as np
    
    import numpy.linalg as la
    import sys
    import pytools.test
    
    
    def have_cl():
        try:
            import pyopencl
            return True
        except:
            return False
    
    if have_cl():
        import pyopencl as cl
    
        import pyopencl.array as cl_array
        import pyopencl.tools as cl_tools
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pyopencl.tools import pytest_generate_tests_for_pyopencl \
                as pytest_generate_tests
    
        from pyopencl.characterize import has_double_support
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_pow_array(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = pow(a_gpu, a_gpu).get()
        assert (np.abs(a ** a - result) < 1e-3).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (a_gpu ** a_gpu).get()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        assert (np.abs(pow(a, a) - result) < 1e-3).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_pow_number(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    
        result = pow(a_gpu, 2).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert (np.abs(a ** 2 - result) < 1e-3).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_abs(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        a = -cl_array.arange(queue, 111, dtype=np.float32)
    
        res = a.get()
    
        for i in range(111):
            assert res[i] <= 0
    
        a = abs(a)
    
        res = a.get()
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        for i in range(111):
    
            assert abs(res[i]) >= 0
            assert res[i] == i
    
    
    @pytools.test.mark_test.opencl
    
    def test_len(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_cpu = cl_array.to_device(queue, a)
    
        assert len(a_cpu) == 10
    
    
    @pytools.test.mark_test.opencl
    
        """Test the muliplication of an array with a scalar. """
    
    
        queue = cl.CommandQueue(context)
    
        for sz in [10, 50000]:
            for dtype, scalars in [
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                (np.float32, [2]),
    
                ]:
                for scalar in scalars:
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                    a = np.arange(sz).astype(dtype)
    
                    a_gpu = cl_array.to_device(queue, a)
    
                    a_doubled = (scalar * a_gpu).get()
    
                    assert (a * scalar == a_doubled).all()
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
    
    
    @pytools.test.mark_test.opencl
    
    def test_multiply_array(ctx_factory):
    
        """Test the multiplication of two arrays."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
        b_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_squared = (b_gpu * a_gpu).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert (a * a == a_squared).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_addition_array(ctx_factory):
    
        """Test the addition of two arrays."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_added = (a_gpu + a_gpu).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert (a + a == a_added).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_addition_scalar(ctx_factory):
    
        """Test the addition of an array and a scalar."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_added = (7 + a_gpu).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert (7 + a == a_added).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_substract_array(ctx_factory):
    
        """Test the substraction of two arrays."""
        #test data
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
        b = np.array([10, 20, 30, 40, 50,
                      60, 70, 80, 90, 100]).astype(np.float32)
    
        queue = cl.CommandQueue(context)
    
    
        a_gpu = cl_array.to_device(queue, a)
        b_gpu = cl_array.to_device(queue, b)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (a_gpu - b_gpu).get()
        assert (a - b == result).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (b_gpu - a_gpu).get()
        assert (b - a == result).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_substract_scalar(ctx_factory):
    
        """Test the substraction of an array and a scalar."""
    
    
        queue = cl.CommandQueue(context)
    
        #test data
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
    
        #convert a to a gpu object
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (a_gpu - 7).get()
        assert (a - 7 == result).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (7 - a_gpu).get()
        assert (7 - a == result).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_divide_scalar(ctx_factory):
    
        """Test the division of an array and a scalar."""
    
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (a_gpu / 2).get()
        assert (a / 2 == result).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        result = (2 / a_gpu).get()
        assert (np.abs(2 / a - result) < 1e-5).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_divide_array(ctx_factory):
    
        """Test the division of an array and a scalar. """
    
    
        queue = cl.CommandQueue(context)
    
        #test data
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(np.float32)
        b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
        b_gpu = cl_array.to_device(queue, b)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_divide = (a_gpu / b_gpu).get()
        assert (np.abs(a / b - a_divide) < 1e-3).all()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        a_divide = (b_gpu / a_gpu).get()
        assert (np.abs(b / a - a_divide) < 1e-3).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_random(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
        from pyopencl.clrandom import RanluxGenerator
    
    
        if has_double_support(context.devices[0]):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float32, np.float64]
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float32]
    
        gen = RanluxGenerator(queue, 5120)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        for ary_size in [300, 301, 302, 303, 10007]:
            for dtype in dtypes:
                ran = cl_array.zeros(queue, ary_size, dtype)
                gen.fill_uniform(ran)
                assert (0 < ran.get()).all()
                assert (ran.get() < 1).all()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                gen.synchronize(queue)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                ran = cl_array.zeros(queue, ary_size, dtype)
                gen.fill_uniform(ran, a=4, b=7)
                assert (4 < ran.get()).all()
                assert (ran.get() < 7).all()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                ran = gen.normal(queue, (10007,), dtype, mu=4, sigma=3)
    
    
        dtypes = [np.int32]
    
        for dtype in dtypes:
    
            ran = gen.uniform(queue, (10000007,), dtype, a=200, b=300)
            assert (200 <= ran.get()).all()
            assert (ran.get() < 300).all()
            #from matplotlib import pyplot as pt
            #pt.hist(ran.get())
            #pt.show()
    
    
    
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_nan_arithmetic(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        def make_nan_contaminated_vector(size):
            shape = (size,)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            a = np.random.randn(*shape).astype(np.float32)
    
            from random import randrange
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
            for i in range(size // 10):
    
                a[randrange(0, size)] = float('nan')
            return a
    
        size = 1 << 20
    
        a = make_nan_contaminated_vector(size)
    
        a_gpu = cl_array.to_device(queue, a)
    
        b = make_nan_contaminated_vector(size)
    
        b_gpu = cl_array.to_device(queue, b)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        ab = a * b
        ab_gpu = (a_gpu * b_gpu).get()
    
        assert (np.isnan(ab) == np.isnan(ab_gpu)).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_elwise_kernel(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
    
        a_gpu = clrand(queue, (50,), np.float32)
        b_gpu = clrand(queue, (50,), np.float32)
    
    
        from pyopencl.elementwise import ElementwiseKernel
        lin_comb = ElementwiseKernel(context,
                "float a, float *x, float b, float *y, float *z",
                "z[i] = a*x[i] + b*y[i]",
                "linear_combination")
    
        c_gpu = cl_array.empty_like(a_gpu)
        lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert la.norm((c_gpu - (5 * a_gpu + 6 * b_gpu)).get()) < 1e-5
    
    @pytools.test.mark_test.opencl
    
    def test_elwise_kernel_with_options(ctx_factory):
    
        from pyopencl.clrandom import rand as clrand
        from pyopencl.elementwise import ElementwiseKernel
    
    
        queue = cl.CommandQueue(context)
    
    
        in_gpu = clrand(queue, (50,), np.float32)
    
        options = ['-D', 'ADD_ONE']
    
        add_one = ElementwiseKernel(
            context,
            "float* out, const float *in",
            """
    
            """,
            options=options,
            )
    
        out_gpu = cl_array.empty_like(in_gpu)
        add_one(out_gpu, in_gpu)
    
        gt = in_gpu.get() + 1
        gv = out_gpu.get()
        assert la.norm(gv - gt) < 1e-5
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_take(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        idx = cl_array.arange(queue, 0, 200000, 2, dtype=np.uint32)
        a = cl_array.arange(queue, 0, 600000, 3, dtype=np.float32)
    
        result = cl_array.take(a, idx)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert ((3 * idx).get() == result.get()).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_arange(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        n = 5000
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        a = cl_array.arange(queue, n, dtype=np.float32)
        assert (np.arange(n, dtype=np.float32) == a.get()).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_reverse(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        n = 5000
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        a = np.arange(n).astype(np.float32)
    
        a_gpu = cl_array.to_device(queue, a)
    
    
        a_gpu = a_gpu.reverse()
    
        assert (a[::-1] == a_gpu.get()).all()
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_sum(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        a_gpu = clrand(queue, (200000,), np.float32)
    
        a = a_gpu.get()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        sum_a = np.sum(a)
    
        sum_a_gpu = cl_array.sum(a_gpu).get()
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert abs(sum_a_gpu - sum_a) / abs(sum_a) < 1e-4
    
    @pytools.test.mark_test.opencl
    
    def test_minmax(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        if has_double_support(context.devices[0]):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float64, np.float32, np.int32]
    
        else:
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float32, np.int32]
    
        for what in ["min", "max"]:
            for dtype in dtypes:
    
                a_gpu = clrand(queue, (200000,), dtype)
    
                a = a_gpu.get()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                op_a = getattr(np, what)(a)
    
                op_a_gpu = getattr(cl_array, what)(a_gpu).get()
    
                assert op_a_gpu == op_a, (op_a_gpu, op_a, dtype, what)
    
    @pytools.test.mark_test.opencl
    
    def test_subset_minmax(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        l_a = 200000
        gran = 5
        l_m = l_a - l_a // gran + 1
    
        if has_double_support(context.devices[0]):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float64, np.float32, np.int32]
    
        else:
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            dtypes = [np.float32, np.int32]
    
    
        for dtype in dtypes:
    
            a_gpu = clrand(queue, (l_a,), dtype)
    
            meaningful_indices_gpu = cl_array.zeros(
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                    queue, l_m, dtype=np.int32)
    
            meaningful_indices = meaningful_indices_gpu.get()
            j = 0
            for i in range(len(meaningful_indices)):
                meaningful_indices[i] = j
                j = j + 1
                if j % gran == 0:
                    j = j + 1
    
            meaningful_indices_gpu = cl_array.to_device(
    
                    queue, meaningful_indices)
    
            b = a[meaningful_indices]
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            min_a = np.min(b)
    
            min_a_gpu = cl_array.subset_min(meaningful_indices_gpu, a_gpu).get()
    
            assert min_a_gpu == min_a
    
    @pytools.test.mark_test.opencl
    
    def test_dot(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        a_gpu = clrand(queue, (200000,), np.float32)
    
        a = a_gpu.get()
    
        b_gpu = clrand(queue, (200000,), np.float32)
    
        b = b_gpu.get()
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        dot_ab = np.dot(a, b)
    
    
        dot_ab_gpu = cl_array.dot(a_gpu, b_gpu).get()
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert abs(dot_ab_gpu - dot_ab) / abs(dot_ab) < 1e-4
    
        @pytools.test.mark_test.opencl
    
            from pyopencl.clrandom import rand as clrand
    
            l = 20000
    
            a_gpu = clrand(queue, (l,))
    
            a = a_gpu.get()
    
            from random import randrange
            for i in range(200):
                start = randrange(l)
                end = randrange(start, l)
    
                a_gpu_slice = a_gpu[start:end]
                a_slice = a[start:end]
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
                assert la.norm(a_gpu_slice.get() - a_slice) == 0
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_if_positive(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        l = 20000
    
        a_gpu = clrand(queue, (l,), np.float32)
        b_gpu = clrand(queue, (l,), np.float32)
    
        a = a_gpu.get()
        b = b_gpu.get()
    
        max_a_b_gpu = cl_array.maximum(a_gpu, b_gpu)
        min_a_b_gpu = cl_array.minimum(a_gpu, b_gpu)
    
    
        print(max_a_b_gpu)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        print(np.maximum(a, b))
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert la.norm(max_a_b_gpu.get() - np.maximum(a, b)) == 0
        assert la.norm(min_a_b_gpu.get() - np.minimum(a, b)) == 0
    
    
    
    @pytools.test.mark_test.opencl
    
    def test_take_put(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        for n in [5, 17, 333]:
            one_field_size = 8
    
            buf_gpu = cl_array.zeros(queue,
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
                    n * one_field_size, dtype=np.float32)
    
            dest_indices = cl_array.to_device(queue,
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
                    np.array([0, 1, 2,  3, 32, 33, 34, 35], dtype=np.uint32))
    
            read_map = cl_array.to_device(queue,
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                    np.array([7, 6, 5, 4, 3, 2, 1, 0], dtype=np.uint32))
    
    
            cl_array.multi_take_put(
                    arrays=[buf_gpu for i in range(n)],
                    dest_indices=dest_indices,
                    src_indices=read_map,
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
                    src_offsets=[i * one_field_size for i in range(n)],
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
    
    
    @pytools.test.mark_test.opencl
    
    def test_astype(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        if not has_double_support(context.devices[0]):
            return
    
    
        a_gpu = clrand(queue, (2000,), dtype=np.float32)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        a = a_gpu.get().astype(np.float64)
        a2 = a_gpu.astype(np.float64).get()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        assert a2.dtype == np.float64
    
        assert la.norm(a - a2) == 0, (a, a2)
    
    
        a_gpu = clrand(queue, (2000,), dtype=np.float64)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        a = a_gpu.get().astype(np.float32)
        a2 = a_gpu.astype(np.float32).get()
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        assert a2.dtype == np.float32
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert la.norm(a - a2) / la.norm(a) < 1e-7
    
    def summarize_error(obtained, desired, orig, thresh=1e-5):
        err = obtained - desired
        ok_count = 0
    
        entries = []
        for i, val in enumerate(err):
            if abs(val) > thresh:
                if ok_count:
                    entries.append("<%d ok>" % ok_count)
                    ok_count = 0
    
                entries.append("%r (want: %r, diff: %r, orig: %r)" % (obtained[i], desired[i],
                    obtained[i]-desired[i], orig[i]))
            else:
                ok_count += 1
    
        if ok_count:
            entries.append("<%d ok>" % ok_count)
    
        return " ".join(entries)
    
    
    @pytools.test.mark_test.opencl
    
    def test_scan(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
        from pyopencl.scan import InclusiveScanKernel, ExclusiveScanKernel
    
        for cls in [
                InclusiveScanKernel,
                ExclusiveScanKernel
                ]:
    
            knl = cls(context, dtype, "a+b", "0")
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
                10, 2 ** 10 - 5, 2 ** 10,
                2 ** 20 - 2 ** 18,
                2 ** 20 - 2 ** 18 + 5,
                2 ** 10 + 5,
    
                2 ** 20 + 1,
                2 ** 20, 2 ** 24
                ]:
    
    
                host_data = np.random.randint(0, 10, n).astype(dtype)
                dev_data = cl_array.to_device(queue, host_data)
    
    
                assert (host_data == dev_data.get()).all() # /!\ fails on Nv GT2?? for some drivers
    
    
                knl(dev_data)
    
                desired_result = np.cumsum(host_data, axis=0)
    
                if cls is ExclusiveScanKernel:
                    desired_result -= host_data
    
                is_ok = (dev_data.get() == desired_result).all()
                if not is_ok:
                    print summarize_error(dev_data.get(), desired_result, host_data)
    
                assert is_ok
    
                from gc import collect
                collect()
    
    @pytools.test.mark_test.opencl
    
    def test_stride_preservation(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        A = np.random.rand(3, 3)
    
        print(AT.flags.f_contiguous, AT.flags.c_contiguous)
    
        AT_GPU = cl_array.to_device(queue, AT)
    
        print(AT_GPU.flags.f_contiguous, AT_GPU.flags.c_contiguous)
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        assert np.allclose(AT_GPU.get(), AT)
    
    @pytools.test.mark_test.opencl
    
    def test_vector_fill(ctx_factory):
        context = ctx_factory()
    
        queue = cl.CommandQueue(context)
    
        a_gpu = cl_array.Array(queue, 100, dtype=cl_array.vec.float4)
        a_gpu.fill(cl_array.vec.make_float4(0.0, 0.0, 1.0, 0.0))
        a = a_gpu.get()
        assert a.dtype is cl_array.vec.float4
    
    
        a_gpu = cl_array.zeros(queue, 100, dtype=cl_array.vec.float4)
    
    
    @pytools.test.mark_test.opencl
    def test_mem_pool_with_arrays(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
        mem_pool = cl_tools.MemoryPool(cl_tools.CLAllocator(context))
    
    
        a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool)
    
        b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000
    
        result = cl_array.dot(a_dev, b_dev)
        assert a_dev.allocator is mem_pool
        assert b_dev.allocator is mem_pool
        assert result.allocator is mem_pool
    
    
    @pytools.test.mark_test.opencl
    def test_view(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        a = np.arange(128).reshape(8, 16).astype(np.float32)
        a_dev = cl_array.to_device(queue, a)
    
        # same dtype
        view = a_dev.view()
        assert view.shape == a_dev.shape and view.dtype == a_dev.dtype
    
        # larger dtype
        view = a_dev.view(np.complex64)
        assert view.shape == (8, 8) and view.dtype == np.complex64
    
        # smaller dtype
        view = a_dev.view(np.int16)
        assert view.shape == (8, 32) and view.dtype == np.int16
    
    
    mmc_dtype = np.dtype([
        ("cur_min", np.int32),
        ("cur_max", np.int32),
        ("pad", np.int32),
        ])
    
    
    from pyopencl.tools import register_dtype
    
    register_dtype(mmc_dtype, "minmax_collector", alias_ok=True)
    register_dtype(mmc_dtype, "minmax_collector", alias_ok=True)
    
    @pytools.test.mark_test.opencl
    def test_struct_reduce(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
    
        struct minmax_collector
        {
    
            int cur_min;
            int cur_max;
            // Workaround for OS X Lion GPU CL. Mystifying.
            int pad;
    
        };
    
        typedef struct minmax_collector minmax_collector;
    
        minmax_collector mmc_neutral()
        {
            // FIXME: needs infinity literal in real use, ok here
    
            minmax_collector result;
            result.cur_min = 1<<30;
            result.cur_max = -(1<<30);
    
            return result;
        }
    
        minmax_collector mmc_from_scalar(float x)
        {
    
            minmax_collector result;
            result.cur_min = x;
            result.cur_max = x;
    
            return result;
        }
    
        minmax_collector agg_mmc(minmax_collector a, minmax_collector b)
        {
    
            minmax_collector result = a;
            if (b.cur_min < result.cur_min)
                result.cur_min = b.cur_min;
            if (b.cur_max > result.cur_max)
                result.cur_max = b.cur_max;
    
            return result;
        }
    
        """
    
    
        from pyopencl.clrandom import rand as clrand
    
        a_gpu = clrand(queue, (20000,), dtype=np.int32, a=0, b=10**6)
    
        a = a_gpu.get()
    
        from pyopencl.reduction import ReductionKernel
        red = ReductionKernel(context, mmc_dtype,
                neutral="mmc_neutral()",
                reduce_expr="agg_mmc(a, b)", map_expr="mmc_from_scalar(x[i])",
    
                arguments="__global int *x", preamble=preamble)
    
    
        minmax = red(a_gpu).get()
        #print minmax["cur_min"], minmax["cur_max"]
        #print np.min(a), np.max(a)
    
    
        assert abs(minmax["cur_min"] - np.min(a)) < 1e-5
        assert abs(minmax["cur_max"] - np.max(a)) < 1e-5
    
    if __name__ == "__main__":
    
    Nicolas Pinto's avatar
    Nicolas Pinto committed
        # make sure that import failures get reported, instead of skipping the
        # tests.
    
        import pyopencl as cl
    
        import sys
        if len(sys.argv) > 1:
    
            exec(sys.argv[1])
    
        else:
            from py.test.cmdline import main
            main([__file__])
    
    
    # vim: filetype=pyopencl