"git@gitlab.tiker.net:fikl2/grudge.git" did not exist on "6bbf6c5dd01097b6cc0c5484fc5e539141a4e20f"
Newer
Older
from __future__ import division, with_statement, absolute_import, print_function
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy.linalg as la
import sys
import pyopencl as cl
import pyopencl.array as cl_array
import pyopencl.tools as cl_tools
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from pyopencl.characterize import has_double_support, has_struct_arg_count_bug
from pyopencl.cffi_cl import _PYPY
TO_REAL = {
np.dtype(np.complex64): np.float32,
np.dtype(np.complex128): np.float64
}
def general_clrand(queue, shape, dtype):
from pyopencl.clrandom import rand as clrand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = dtype.type(0).real.dtype
return clrand(queue, shape, real_dtype) + 1j*clrand(queue, shape, real_dtype)
else:
return clrand(queue, shape, dtype)
def make_random_array(queue, dtype, size):
from pyopencl.clrandom import rand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = TO_REAL[dtype]
return (rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
+ rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
* dtype.type(1j))
else:
return rand(queue, shape=(size,), dtype=dtype)
def test_basic_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand
size = 500
ary = (rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64)
+ rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64) * 1j)
assert la.norm((ary*c).get() - c*host_ary) < 1e-5 * la.norm(host_ary)
def test_mix_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
size = 10
dtypes = [
(np.float32, np.complex64),
#(np.int32, np.complex64),
]
dev = context.devices[0]
if has_double_support(dev) and has_struct_arg_count_bug(dev) == "apple":
dtypes.extend([
(np.float32, np.float64),
])
elif has_double_support(dev):
dtypes.extend([
(np.float32, np.float64),
(np.float32, np.complex128),
(np.float64, np.complex64),
(np.float64, np.complex128),
])
from operator import add, mul, sub, truediv
for op in [add, sub, mul, truediv, pow]:
for dtype_a0, dtype_b0 in dtypes:
for dtype_a, dtype_b in [
(dtype_a0, dtype_b0),
(dtype_b0, dtype_a0),
]:
for is_scalar_a, is_scalar_b in [
(False, False),
(False, True),
(True, False),
]:
if is_scalar_a:
ary_a = make_random_array(queue, dtype_a, 1).get()[0]
host_ary_a = ary_a
else:
ary_a = make_random_array(queue, dtype_a, size)
host_ary_a = ary_a.get()
if is_scalar_b:
ary_b = make_random_array(queue, dtype_b, 1).get()[0]
host_ary_b = ary_b
else:
ary_b = make_random_array(queue, dtype_b, size)
host_ary_b = ary_b.get()
print(op, dtype_a, dtype_b, is_scalar_a, is_scalar_b)
dev_result = op(ary_a, ary_b).get()
host_result = op(host_ary_a, host_ary_b)
if host_result.dtype != dev_result.dtype:
# This appears to be a numpy bug, where we get
# served a Python complex that is really a
# smaller numpy complex.
print("HOST_DTYPE: %s DEV_DTYPE: %s" % (
host_result.dtype, dev_result.dtype))
dev_result = dev_result.astype(host_result.dtype)
err = la.norm(host_result-dev_result)/la.norm(host_result)
print(host_result)
print(dev_result)
print(host_result - dev_result)
def test_pow_neg1_vs_inv(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
device = ctx.devices[0]
if not has_double_support(device):
if has_struct_arg_count_bug(device) == "apple":
from pytest import xfail
xfail("apple struct arg counting broken")
a_dev = make_random_array(queue, np.complex128, 20000)
res1 = (a_dev ** (-1)).get()
res2 = (1/a_dev).get()
ref = 1/a_dev.get()
assert la.norm(res1-ref, np.inf) / la.norm(ref) < 1e-13
assert la.norm(res2-ref, np.inf) / la.norm(ref) < 1e-13
def test_vector_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.Array(queue, 100, dtype=cl_array.vec.float4)
a_gpu.fill(cl_array.vec.make_float4(0.0, 0.0, 1.0, 0.0))
a = a_gpu.get()
a_gpu = cl_array.zeros(queue, 100, dtype=cl_array.vec.float4)
def test_absrealimag(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
def real(x):
return x.real
def imag(x):
return x.imag
def conj(x):
return x.conj()
n = 111
for func in [abs, real, imag, conj]:
for dtype in [np.int32, np.float32, np.complex64]:
print(func, dtype)
a = -make_random_array(queue, dtype, n)
host_res = func(a.get())
dev_res = func(a).get()
correct = np.allclose(dev_res, host_res)
if not correct:
print(dev_res)
print(host_res)
print(dev_res-host_res)
assert correct
# }}}
# {{{ operators
def test_rmul_yields_right_type(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
two_a = 2*a_gpu
assert isinstance(two_a, cl_array.Array)
two_a = np.float32(2)*a_gpu
assert isinstance(two_a, cl_array.Array)
def test_pow_array(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, a_gpu).get()
assert (np.abs(a ** a - result) < 3e-3).all()
assert (np.abs(pow(a, a) - result) < 3e-3).all()
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, 2).get()
assert (np.abs(a ** 2 - result) < 1e-3).all()
def test_multiply(ctx_factory):
"""Test the muliplication of an array with a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
for sz in [10, 50000]:
for dtype, scalars in [
(np.float32, [2]),
(np.complex64, [2j]),
]:
a_gpu = make_random_array(queue, dtype, sz)
a = a_gpu.get()
a_mult = (scalar * a_gpu).get()
assert (a * scalar == a_mult).all()
def test_multiply_array(ctx_factory):
"""Test the multiplication of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, a)
def test_addition_array(ctx_factory):
"""Test the addition of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
def test_addition_scalar(ctx_factory):
"""Test the addition of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
def test_substract_array(ctx_factory):
"""Test the substraction of two arrays."""
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
b = np.array([10, 20, 30, 40, 50,
60, 70, 80, 90, 100]).astype(np.float32)
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
result = (a_gpu - b_gpu).get()
assert (a - b == result).all()
result = (b_gpu - a_gpu).get()
assert (b - a == result).all()
def test_substract_scalar(ctx_factory):
"""Test the substraction of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu - 7).get()
assert (a - 7 == result).all()
result = (7 - a_gpu).get()
assert (7 - a == result).all()
def test_divide_scalar(ctx_factory):
"""Test the division of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu / 2).get()
assert (a / 2 == result).all()
result = (2 / a_gpu).get()
assert (np.abs(2 / a - result) < 1e-5).all()
def test_divide_array(ctx_factory):
"""Test the division of an array and a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(np.float32)
b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
a_divide = (a_gpu / b_gpu).get()
assert (np.abs(a / b - a_divide) < 1e-3).all()
a_divide = (b_gpu / a_gpu).get()
assert (np.abs(b / a - a_divide) < 1e-3).all()
def test_random_float_in_range(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import RanluxGenerator
if has_double_support(context.devices[0]):
for ary_size in [300, 301, 302, 303, 10007]:
for dtype in dtypes:
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran)
assert (0 < ran.get()).all()
assert (ran.get() < 1).all()
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran, a=4, b=7)
assert (4 < ran.get()).all()
assert (ran.get() < 7).all()
ran = gen.normal(queue, (10007,), dtype, mu=4, sigma=3)
@pytest.mark.parametrize("dtype", [np.int32, np.int64])
def test_random_int_in_range(ctx_factory, dtype):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import RanluxGenerator
gen = RanluxGenerator(queue, 5120)
if (dtype == np.int64
and context.devices[0].platform.vendor.startswith("Advanced Micro")):
pytest.xfail("AMD miscompiles 64-bit RNG math")
ran = gen.uniform(queue, (10000007,), dtype, a=200, b=300)
assert (200 <= ran.get()).all()
assert (ran.get() < 300).all()
#from matplotlib import pyplot as pt
#pt.hist(ran.get())
#pt.show()
def test_numpy_integer_shape(ctx_factory):
try:
list(np.int32(17))
except:
pass
else:
from pytest import skip
skip("numpy implementation does not handle scalar correctly.")
context = ctx_factory()
queue = cl.CommandQueue(context)
cl_array.empty(queue, np.int32(17), np.float32)
cl_array.empty(queue, (np.int32(17), np.int32(17)), np.float32)
def test_len(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_cpu = cl_array.to_device(queue, a)
assert len(a_cpu) == 10
def test_stride_preservation(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.random.rand(3, 3)
at = a.T
print(at.flags.f_contiguous, at.flags.c_contiguous)
at_gpu = cl_array.to_device(queue, at)
print(at_gpu.flags.f_contiguous, at_gpu.flags.c_contiguous)
assert np.allclose(at_gpu.get(), at)
context = ctx_factory()
queue = cl.CommandQueue(context)
def make_nan_contaminated_vector(size):
shape = (size,)
a = np.random.randn(*shape).astype(np.float32)
from random import randrange
for i in range(size // 10):
a[randrange(0, size)] = float('nan')
return a
size = 1 << 20
a = make_nan_contaminated_vector(size)
a_gpu = cl_array.to_device(queue, a)
b = make_nan_contaminated_vector(size)
b_gpu = cl_array.to_device(queue, b)
ab = a * b
ab_gpu = (a_gpu * b_gpu).get()
assert (np.isnan(ab) == np.isnan(ab_gpu)).all()
def test_mem_pool_with_arrays(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
mem_pool = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool)
b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000
assert a_dev.allocator is mem_pool
assert b_dev.allocator is mem_pool
def test_view(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# same dtype
view = a_dev.view()
assert view.shape == a_dev.shape and view.dtype == a_dev.dtype
# larger dtype
view = a_dev.view(np.complex64)
assert view.shape == (8, 8) and view.dtype == np.complex64
# smaller dtype
view = a_dev.view(np.int16)
assert view.shape == (8, 32) and view.dtype == np.int16
def test_diff(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
l = 20000
a_dev = clrand(queue, (l,), dtype=np.float32)
a = a_dev.get()
err = la.norm(
(cl.array.diff(a_dev).get() - np.diff(a)))
assert err < 1e-4
def test_slice(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = clrand(queue, (l,), dtype=tp)
b_gpu = clrand(queue, (l,), dtype=tp)
for i in range(20):
start = randrange(l)
end = randrange(start, l)
a_gpu_slice = tp(2)*a_gpu[start:end]
a_slice = tp(2)*a[start:end]
assert la.norm(a_gpu_slice.get() - a_slice) == 0
for i in range(20):
start = randrange(l)
end = randrange(start, l)
a_gpu[start:end] = tp(2)*b[start:end]
a[start:end] = tp(2)*b[start:end]
assert la.norm(a_gpu.get() - a) == 0
for i in range(20):
start = randrange(l)
end = randrange(start, l)
a_gpu[start:end] = tp(2)*b_gpu[start:end]
a[start:end] = tp(2)*b[start:end]
def test_concatenate(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_dev = clrand(queue, (5, 15, 20), dtype=np.float32)
b_dev = clrand(queue, (4, 15, 20), dtype=np.float32)
c_dev = clrand(queue, (3, 15, 20), dtype=np.float32)
a = a_dev.get()
b = b_dev.get()
c = c_dev.get()
cat_dev = cl.array.concatenate((a_dev, b_dev, c_dev))
cat = np.concatenate((a, b, c))
assert la.norm(cat - cat_dev.get()) == 0
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
# }}}
# {{{ conditionals, any, all
def test_comparisons(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
l = 20000
a_dev = clrand(queue, (l,), dtype=np.float32)
b_dev = clrand(queue, (l,), dtype=np.float32)
a = a_dev.get()
b = b_dev.get()
import operator as o
for op in [o.eq, o.ne, o.le, o.lt, o.ge, o.gt]:
res_dev = op(a_dev, b_dev)
res = op(a, b)
assert (res_dev.get() == res).all()
res_dev = op(a_dev, 0)
res = op(a, 0)
assert (res_dev.get() == res).all()
res_dev = op(0, b_dev)
res = op(0, b)
assert (res_dev.get() == res).all()
def test_any_all(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
l = 20000
a_dev = cl_array.zeros(queue, (l,), dtype=np.int8)
assert not a_dev.all().get()
assert not a_dev.any().get()
assert not a_dev.all().get()
assert a_dev.any().get()
assert a_dev.all().get()
assert a_dev.any().get()
def test_map_to_host(ctx_factory):
if _PYPY:
pytest.skip("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
if context.devices[0].type & cl.device_type.GPU:
mf = cl.mem_flags
allocator = cl_tools.DeferredAllocator(
context, mf.READ_WRITE | mf.ALLOC_HOST_PTR)
else:
allocator = None
a_dev = cl_array.zeros(queue, (5, 6, 7,), dtype=np.float32, allocator=allocator)
a_dev[3, 2, 1] = 10
a_host = a_dev.map_to_host()
a_host[1, 2, 3] = 10
a_host.base.release(queue)
print("DEV[HOST_WRITE]", a_dev.get()[1, 2, 3])
print("HOST[DEV_WRITE]", a_host_saved[3, 2, 1])
assert (a_host_saved == a_dev.get()).all()
def test_view_and_strides(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
return
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
x = clrand(queue, (5, 10), dtype=np.float32)
y = x[:3, :5]
yv = y.view()
assert yv.shape == y.shape
assert yv.strides == y.strides
with pytest.raises(AssertionError):
if _PYPY:
# https://bitbucket.org/pypy/numpy/issue/28/indexerror-on-ellipsis-slice
pytest.xfail("numpypy bug #28")
context = ctx_factory()
queue = cl.CommandQueue(context)
n = 2
result = cl.array.empty(queue, (2, n*6), np.float32)
def view(z):
return z[..., n*3:n*6].reshape(z.shape[:-1] + (n, 3))
result = result.with_queue(queue)
result.fill(0)
view(result)[0].fill(1)
view(result)[1].fill(1)
x = result.get()
assert (view(x) == 1).all()
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
def test_event_management(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
x = clrand(queue, (5, 10), dtype=np.float32)
assert len(x.events) == 1, len(x._events)
x.finish()
assert len(x.events) == 0
y = x+x
assert len(y.events) == 1
y = x*x
assert len(y.events) == 1
y = 2*x
assert len(y.events) == 1
y = 2/x
assert len(y.events) == 1
y = x/2
assert len(y.events) == 1
y = x**2
assert len(y.events) == 1
y = 2**x
assert len(y.events) == 1
for i in range(10):
x.fill(0)
assert len(x.events) == 10
for i in range(1000):
x.fill(0)
assert len(x.events) < 100
Andreas Klöckner
committed
def test_reshape(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# different ways to specify the shape
a_dev.reshape(4, 32)
a_dev.reshape((4, 32))
a_dev.reshape([4, 32])
# using -1 as unknown dimension
assert a_dev.reshape(-1, 32).shape == (4, 32)
assert a_dev.reshape((32, -1)).shape == (32, 4)
assert a_dev.reshape(((8, -1, 4))).shape == (8, 4, 4)
import pytest
with pytest.raises(ValueError):
a_dev.reshape(-1, -1, 4)
def test_skip_slicing(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_host = np.arange(16).reshape((4, 4))
b_host = a_host[::3]
a = cl_array.to_device(queue, a_host)
b = a[::3]
assert b.shape == b_host.shape
assert np.array_equal(b[1].get(), b_host[1])
def test_transpose(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (10, 20, 30), dtype=np.float32)
a = a_gpu.get()
# FIXME: not contiguous
#assert np.allclose(a_gpu.transpose((1,2,0)).get(), a.transpose((1,2,0)))
assert np.array_equal(a_gpu.T.get(), a.T)
def test_newaxis(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (10, 20, 30), dtype=np.float32)
a = a_gpu.get()
b_gpu = a_gpu[:, np.newaxis]
b = a[:, np.newaxis]
assert b_gpu.shape == b.shape
for i in range(b.ndim):
if b.shape[i] > 1:
assert b_gpu.strides[i] == b.strides[i]
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
def test_squeeze(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
shape = (40, 2, 5, 100)
a_cpu = np.random.random(size=shape)
a_gpu = cl_array.to_device(queue, a_cpu)
# Slice with length 1 on dimensions 0 and 1
a_gpu_slice = a_gpu[0:1, 1:2, :, :]
assert a_gpu_slice.shape == (1, 1, shape[2], shape[3])
assert a_gpu_slice.flags.c_contiguous is False
# Squeeze it and obtain contiguity
a_gpu_squeezed_slice = a_gpu[0:1, 1:2, :, :].squeeze()
assert a_gpu_squeezed_slice.shape == (shape[2], shape[3])
assert a_gpu_squeezed_slice.flags.c_contiguous is True
# Check that we get the original values out
#assert np.all(a_gpu_slice.get().ravel() == a_gpu_squeezed_slice.get().ravel())
# Slice with length 1 on dimensions 2
a_gpu_slice = a_gpu[:, :, 2:3, :]
assert a_gpu_slice.shape == (shape[0], shape[1], 1, shape[3])
assert a_gpu_slice.flags.c_contiguous is False
# Squeeze it, but no contiguity here
a_gpu_squeezed_slice = a_gpu[:, :, 2:3, :].squeeze()
assert a_gpu_squeezed_slice.shape == (shape[0], shape[1], shape[3])
assert a_gpu_squeezed_slice.flags.c_contiguous is False
# Check that we get the original values out
#assert np.all(a_gpu_slice.get().ravel() == a_gpu_squeezed_slice.get().ravel())
# make sure that import failures get reported, instead of skipping the
# tests.
from py.test.cmdline import main