Newer
Older
from __future__ import division, with_statement, absolute_import, print_function
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy.linalg as la
import sys
import pyopencl as cl
import pyopencl.array as cl_array
import pyopencl.tools as cl_tools
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from pyopencl.characterize import has_double_support, has_struct_arg_count_bug
from pyopencl.cffi_cl import _PYPY
from pyopencl.clrandom import RanluxGenerator, PhiloxGenerator, ThreefryGenerator
TO_REAL = {
np.dtype(np.complex64): np.float32,
np.dtype(np.complex128): np.float64
}
def general_clrand(queue, shape, dtype):
from pyopencl.clrandom import rand as clrand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = dtype.type(0).real.dtype
return clrand(queue, shape, real_dtype) + 1j*clrand(queue, shape, real_dtype)
else:
return clrand(queue, shape, dtype)
def make_random_array(queue, dtype, size):
from pyopencl.clrandom import rand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = TO_REAL[dtype]
return (rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
+ rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
* dtype.type(1j))
else:
return rand(queue, shape=(size,), dtype=dtype)
def test_basic_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand
size = 500
ary = (rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64)
+ rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64) * 1j)
assert la.norm((ary*c).get() - c*host_ary) < 1e-5 * la.norm(host_ary)
def test_mix_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
size = 10
dtypes = [
(np.float32, np.complex64),
#(np.int32, np.complex64),
]
dev = context.devices[0]
if has_double_support(dev) and has_struct_arg_count_bug(dev) == "apple":
dtypes.extend([
(np.float32, np.float64),
])
elif has_double_support(dev):
dtypes.extend([
(np.float32, np.float64),
(np.float32, np.complex128),
(np.float64, np.complex64),
(np.float64, np.complex128),
])
from operator import add, mul, sub, truediv
for op in [add, sub, mul, truediv, pow]:
for dtype_a0, dtype_b0 in dtypes:
for dtype_a, dtype_b in [
(dtype_a0, dtype_b0),
(dtype_b0, dtype_a0),
]:
for is_scalar_a, is_scalar_b in [
(False, False),
(False, True),
(True, False),
]:
if is_scalar_a:
ary_a = make_random_array(queue, dtype_a, 1).get()[0]
host_ary_a = ary_a
else:
ary_a = make_random_array(queue, dtype_a, size)
host_ary_a = ary_a.get()
if is_scalar_b:
ary_b = make_random_array(queue, dtype_b, 1).get()[0]
host_ary_b = ary_b
else:
ary_b = make_random_array(queue, dtype_b, size)
host_ary_b = ary_b.get()
print(op, dtype_a, dtype_b, is_scalar_a, is_scalar_b)
dev_result = op(ary_a, ary_b).get()
host_result = op(host_ary_a, host_ary_b)
if host_result.dtype != dev_result.dtype:
# This appears to be a numpy bug, where we get
# served a Python complex that is really a
# smaller numpy complex.
print("HOST_DTYPE: %s DEV_DTYPE: %s" % (
host_result.dtype, dev_result.dtype))
dev_result = dev_result.astype(host_result.dtype)
err = la.norm(host_result-dev_result)/la.norm(host_result)
print(host_result)
print(dev_result)
print(host_result - dev_result)
def test_pow_neg1_vs_inv(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
device = ctx.devices[0]
if not has_double_support(device):
if has_struct_arg_count_bug(device) == "apple":
from pytest import xfail
xfail("apple struct arg counting broken")
a_dev = make_random_array(queue, np.complex128, 20000)
res1 = (a_dev ** (-1)).get()
res2 = (1/a_dev).get()
ref = 1/a_dev.get()
assert la.norm(res1-ref, np.inf) / la.norm(ref) < 1e-13
assert la.norm(res2-ref, np.inf) / la.norm(ref) < 1e-13
def test_vector_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.Array(queue, 100, dtype=cl_array.vec.float4)
a_gpu.fill(cl_array.vec.make_float4(0.0, 0.0, 1.0, 0.0))
a = a_gpu.get()
a_gpu = cl_array.zeros(queue, 100, dtype=cl_array.vec.float4)
def test_absrealimag(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
def real(x):
return x.real
def imag(x):
return x.imag
def conj(x):
return x.conj()
n = 111
for func in [abs, real, imag, conj]:
for dtype in [np.int32, np.float32, np.complex64]:
print(func, dtype)
a = -make_random_array(queue, dtype, n)
host_res = func(a.get())
dev_res = func(a).get()
correct = np.allclose(dev_res, host_res)
if not correct:
print(dev_res)
print(host_res)
print(dev_res-host_res)
assert correct
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def test_custom_type_zeros(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
if not (
queue._get_cl_version() >= (1, 2)
and cl.get_cl_header_version() >= (1, 2)):
pytest.skip("CL1.2 not available")
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
("pad", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "mmc_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 1000
z_dev = cl.array.zeros(queue, n, dtype=dtype)
z = z_dev.get()
assert np.array_equal(np.zeros(n, dtype), z)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def test_custom_type_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.characterize import has_struct_arg_count_bug
if has_struct_arg_count_bug(queue.device):
pytest.skip("device has LLVM arg counting bug")
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
("pad", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "mmc_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 1000
z_dev = cl.array.empty(queue, n, dtype=dtype)
z_dev.fill(np.zeros((), dtype))
z = z_dev.get()
assert np.array_equal(np.zeros(n, dtype), z)
# {{{ operators
def test_rmul_yields_right_type(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
two_a = 2*a_gpu
assert isinstance(two_a, cl_array.Array)
two_a = np.float32(2)*a_gpu
assert isinstance(two_a, cl_array.Array)
def test_pow_array(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, a_gpu).get()
assert (np.abs(a ** a - result) < 3e-3).all()
assert (np.abs(pow(a, a) - result) < 3e-3).all()
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, 2).get()
assert (np.abs(a ** 2 - result) < 1e-3).all()
def test_multiply(ctx_factory):
"""Test the muliplication of an array with a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
for sz in [10, 50000]:
for dtype, scalars in [
(np.float32, [2]),
(np.complex64, [2j]),
]:
a_gpu = make_random_array(queue, dtype, sz)
a = a_gpu.get()
a_mult = (scalar * a_gpu).get()
assert (a * scalar == a_mult).all()
def test_multiply_array(ctx_factory):
"""Test the multiplication of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, a)
def test_addition_array(ctx_factory):
"""Test the addition of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
def test_addition_scalar(ctx_factory):
"""Test the addition of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
def test_substract_array(ctx_factory):
"""Test the substraction of two arrays."""
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
b = np.array([10, 20, 30, 40, 50,
60, 70, 80, 90, 100]).astype(np.float32)
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
result = (a_gpu - b_gpu).get()
assert (a - b == result).all()
result = (b_gpu - a_gpu).get()
assert (b - a == result).all()
def test_substract_scalar(ctx_factory):
"""Test the substraction of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu - 7).get()
assert (a - 7 == result).all()
result = (7 - a_gpu).get()
assert (7 - a == result).all()
def test_divide_scalar(ctx_factory):
"""Test the division of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu / 2).get()
assert (a / 2 == result).all()
result = (2 / a_gpu).get()
assert (np.abs(2 / a - result) < 1e-5).all()
def test_divide_array(ctx_factory):
"""Test the division of an array and a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(np.float32)
b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
a_divide = (a_gpu / b_gpu).get()
assert (np.abs(a / b - a_divide) < 1e-3).all()
a_divide = (b_gpu / a_gpu).get()
assert (np.abs(b / a - a_divide) < 1e-3).all()
@pytest.mark.parametrize("rng_class",
[RanluxGenerator, PhiloxGenerator, ThreefryGenerator])
@pytest.mark.parametrize("ary_size", [300, 301, 302, 303, 10007])
def test_random_float_in_range(ctx_factory, rng_class, ary_size, plot_hist=False):
context = ctx_factory()
queue = cl.CommandQueue(context)
if has_double_support(context.devices[0]):
if rng_class is RanluxGenerator:
gen = rng_class(queue, 5120)
else:
gen = rng_class(context)
for dtype in dtypes:
print(dtype)
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran)
if plot_hist:
import matplotlib.pyplot as pt
pt.hist(ran.get(), 30)
pt.show()
assert (0 < ran.get()).all()
assert (ran.get() < 1).all()
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran, a=4, b=7)
assert (4 < ran.get()).all()
assert (ran.get() < 7).all()
ran = gen.normal(queue, ary_size, dtype, mu=10, sigma=3)
if plot_hist:
import matplotlib.pyplot as pt
pt.hist(ran.get(), 30)
pt.show()
@pytest.mark.parametrize("dtype", [np.int32, np.int64])
@pytest.mark.parametrize("rng_class",
[RanluxGenerator, PhiloxGenerator, ThreefryGenerator])
def test_random_int_in_range(ctx_factory, rng_class, dtype, plot_hist=False):
context = ctx_factory()
queue = cl.CommandQueue(context)
if rng_class is RanluxGenerator:
gen = rng_class(queue, 5120)
else:
gen = rng_class(context)
# if (dtype == np.int64
# and context.devices[0].platform.vendor.startswith("Advanced Micro")):
# pytest.xfail("AMD miscompiles 64-bit RNG math")
ran = gen.uniform(queue, (10000007,), dtype, a=200, b=300).get()
assert (200 <= ran).all()
assert (ran < 300).all()
print(np.min(ran), np.max(ran))
assert np.max(ran) > 295
if plot_hist:
from matplotlib import pyplot as pt
pt.hist(ran)
pt.show()
def test_numpy_integer_shape(ctx_factory):
try:
list(np.int32(17))
except:
pass
else:
from pytest import skip
skip("numpy implementation does not handle scalar correctly.")
context = ctx_factory()
queue = cl.CommandQueue(context)
cl_array.empty(queue, np.int32(17), np.float32)
cl_array.empty(queue, (np.int32(17), np.int32(17)), np.float32)
def test_len(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_cpu = cl_array.to_device(queue, a)
assert len(a_cpu) == 10
def test_stride_preservation(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.random.rand(3, 3)
at = a.T
print(at.flags.f_contiguous, at.flags.c_contiguous)
at_gpu = cl_array.to_device(queue, at)
print(at_gpu.flags.f_contiguous, at_gpu.flags.c_contiguous)
assert np.allclose(at_gpu.get(), at)
context = ctx_factory()
queue = cl.CommandQueue(context)
def make_nan_contaminated_vector(size):
shape = (size,)
a = np.random.randn(*shape).astype(np.float32)
from random import randrange
for i in range(size // 10):
a[randrange(0, size)] = float('nan')
return a
size = 1 << 20
a = make_nan_contaminated_vector(size)
a_gpu = cl_array.to_device(queue, a)
b = make_nan_contaminated_vector(size)
b_gpu = cl_array.to_device(queue, b)
ab = a * b
ab_gpu = (a_gpu * b_gpu).get()
assert (np.isnan(ab) == np.isnan(ab_gpu)).all()
def test_mem_pool_with_arrays(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
mem_pool = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool)
b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000
assert a_dev.allocator is mem_pool
assert b_dev.allocator is mem_pool
def test_view(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# same dtype
view = a_dev.view()
assert view.shape == a_dev.shape and view.dtype == a_dev.dtype
# larger dtype
view = a_dev.view(np.complex64)
assert view.shape == (8, 8) and view.dtype == np.complex64
# smaller dtype
view = a_dev.view(np.int16)
assert view.shape == (8, 32) and view.dtype == np.int16
def test_diff(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
l = 20000
a_dev = clrand(queue, (l,), dtype=np.float32)
a = a_dev.get()
err = la.norm(
(cl.array.diff(a_dev).get() - np.diff(a)))
assert err < 1e-4
def test_slice(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = clrand(queue, (l,), dtype=tp)
b_gpu = clrand(queue, (l,), dtype=tp)
for i in range(20):
start = randrange(l)
end = randrange(start, l)
a_gpu_slice = tp(2)*a_gpu[start:end]
a_slice = tp(2)*a[start:end]
assert la.norm(a_gpu_slice.get() - a_slice) == 0
for i in range(20):
start = randrange(l)
end = randrange(start, l)
a_gpu[start:end] = tp(2)*b[start:end]
a[start:end] = tp(2)*b[start:end]
assert la.norm(a_gpu.get() - a) == 0
for i in range(20):
start = randrange(l)
end = randrange(start, l)
a_gpu[start:end] = tp(2)*b_gpu[start:end]
a[start:end] = tp(2)*b[start:end]
def test_concatenate(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_dev = clrand(queue, (5, 15, 20), dtype=np.float32)
b_dev = clrand(queue, (4, 15, 20), dtype=np.float32)
c_dev = clrand(queue, (3, 15, 20), dtype=np.float32)
a = a_dev.get()
b = b_dev.get()
c = c_dev.get()
cat_dev = cl.array.concatenate((a_dev, b_dev, c_dev))
cat = np.concatenate((a, b, c))
assert la.norm(cat - cat_dev.get()) == 0
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# }}}
# {{{ conditionals, any, all
def test_comparisons(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
l = 20000
a_dev = clrand(queue, (l,), dtype=np.float32)
b_dev = clrand(queue, (l,), dtype=np.float32)
a = a_dev.get()
b = b_dev.get()
import operator as o
for op in [o.eq, o.ne, o.le, o.lt, o.ge, o.gt]:
res_dev = op(a_dev, b_dev)
res = op(a, b)
assert (res_dev.get() == res).all()
res_dev = op(a_dev, 0)
res = op(a, 0)
assert (res_dev.get() == res).all()
res_dev = op(0, b_dev)
res = op(0, b)
assert (res_dev.get() == res).all()
def test_any_all(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
l = 20000
a_dev = cl_array.zeros(queue, (l,), dtype=np.int8)
assert not a_dev.all().get()
assert not a_dev.any().get()
assert not a_dev.all().get()
assert a_dev.any().get()
assert a_dev.all().get()
assert a_dev.any().get()
def test_map_to_host(ctx_factory):
if _PYPY:
pytest.skip("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
if context.devices[0].type & cl.device_type.GPU:
mf = cl.mem_flags
allocator = cl_tools.DeferredAllocator(
context, mf.READ_WRITE | mf.ALLOC_HOST_PTR)
else:
allocator = None
a_dev = cl_array.zeros(queue, (5, 6, 7,), dtype=np.float32, allocator=allocator)
a_dev[3, 2, 1] = 10
a_host = a_dev.map_to_host()
a_host[1, 2, 3] = 10
a_host.base.release(queue)
print("DEV[HOST_WRITE]", a_dev.get()[1, 2, 3])
print("HOST[DEV_WRITE]", a_host_saved[3, 2, 1])
assert (a_host_saved == a_dev.get()).all()
def test_view_and_strides(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
return
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
x = clrand(queue, (5, 10), dtype=np.float32)
y = x[:3, :5]
yv = y.view()
assert yv.shape == y.shape
assert yv.strides == y.strides
with pytest.raises(AssertionError):
if _PYPY:
# https://bitbucket.org/pypy/numpy/issue/28/indexerror-on-ellipsis-slice
pytest.xfail("numpypy bug #28")
context = ctx_factory()
queue = cl.CommandQueue(context)
n = 2
result = cl.array.empty(queue, (2, n*6), np.float32)
def view(z):
return z[..., n*3:n*6].reshape(z.shape[:-1] + (n, 3))
result = result.with_queue(queue)
result.fill(0)
view(result)[0].fill(1)
view(result)[1].fill(1)
x = result.get()
assert (view(x) == 1).all()
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
def test_event_management(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
x = clrand(queue, (5, 10), dtype=np.float32)
assert len(x.events) == 1, len(x._events)
x.finish()
assert len(x.events) == 0
y = x+x
assert len(y.events) == 1
y = x*x
assert len(y.events) == 1
y = 2*x
assert len(y.events) == 1
y = 2/x
assert len(y.events) == 1
y = x/2
assert len(y.events) == 1
y = x**2
assert len(y.events) == 1
y = 2**x
assert len(y.events) == 1
for i in range(10):
x.fill(0)
assert len(x.events) == 10
for i in range(1000):
x.fill(0)
assert len(x.events) < 100
Andreas Klöckner
committed
def test_reshape(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# different ways to specify the shape
a_dev.reshape(4, 32)
a_dev.reshape((4, 32))
a_dev.reshape([4, 32])
# using -1 as unknown dimension
assert a_dev.reshape(-1, 32).shape == (4, 32)
assert a_dev.reshape((32, -1)).shape == (32, 4)
assert a_dev.reshape(((8, -1, 4))).shape == (8, 4, 4)
import pytest
with pytest.raises(ValueError):
a_dev.reshape(-1, -1, 4)
def test_skip_slicing(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_host = np.arange(16).reshape((4, 4))
b_host = a_host[::3]
a = cl_array.to_device(queue, a_host)
b = a[::3]
assert b.shape == b_host.shape
assert np.array_equal(b[1].get(), b_host[1])
def test_transpose(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (10, 20, 30), dtype=np.float32)
a = a_gpu.get()
# FIXME: not contiguous
#assert np.allclose(a_gpu.transpose((1,2,0)).get(), a.transpose((1,2,0)))
assert np.array_equal(a_gpu.T.get(), a.T)
def test_newaxis(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (10, 20, 30), dtype=np.float32)
a = a_gpu.get()
b_gpu = a_gpu[:, np.newaxis]
b = a[:, np.newaxis]
assert b_gpu.shape == b.shape
for i in range(b.ndim):
if b.shape[i] > 1:
assert b_gpu.strides[i] == b.strides[i]
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def test_squeeze(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
shape = (40, 2, 5, 100)
a_cpu = np.random.random(size=shape)
a_gpu = cl_array.to_device(queue, a_cpu)
# Slice with length 1 on dimensions 0 and 1
a_gpu_slice = a_gpu[0:1, 1:2, :, :]
assert a_gpu_slice.shape == (1, 1, shape[2], shape[3])
assert a_gpu_slice.flags.c_contiguous is False
# Squeeze it and obtain contiguity
a_gpu_squeezed_slice = a_gpu[0:1, 1:2, :, :].squeeze()
assert a_gpu_squeezed_slice.shape == (shape[2], shape[3])
assert a_gpu_squeezed_slice.flags.c_contiguous is True
# Check that we get the original values out
#assert np.all(a_gpu_slice.get().ravel() == a_gpu_squeezed_slice.get().ravel())
# Slice with length 1 on dimensions 2
a_gpu_slice = a_gpu[:, :, 2:3, :]
assert a_gpu_slice.shape == (shape[0], shape[1], 1, shape[3])
assert a_gpu_slice.flags.c_contiguous is False
# Squeeze it, but no contiguity here
a_gpu_squeezed_slice = a_gpu[:, :, 2:3, :].squeeze()
assert a_gpu_squeezed_slice.shape == (shape[0], shape[1], shape[3])