Skip to content
Snippets Groups Projects
test_grudge.py 37.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = """
    Copyright (C) 2015 Andreas Kloeckner
    Copyright (C) 2021 University of Illinois Board of Trustees
    """
    
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    import numpy as np
    import numpy.linalg as la
    
    
    from meshmode import _acf       # noqa: F401
    from meshmode.dof_array import flatten, thaw
    
    from pytools.obj_array import flat_obj_array, make_obj_array
    
    from grudge import sym, bind, DiscretizationCollection
    
    import grudge.dof_desc as dof_desc
    
    from meshmode.array_context import (  # noqa
            pytest_generate_tests_for_pyopencl_array_context
    
            as pytest_generate_tests)
    
    
    import logging
    
    logger = logging.getLogger(__name__)
    
    
    # {{{ inverse metric
    
    
    def test_inverse_metric(actx_factory, dim):
        actx = actx_factory()
    
        mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
    
                nelements_per_axis=(6,)*dim, order=4)
    
    
        def m(x):
            result = np.empty_like(x)
            result[0] = (
                    1.5*x[0] + np.cos(x[0])
                    + 0.1*np.sin(10*x[1]))
            result[1] = (
                    0.05*np.cos(10*x[0])
                    + 1.3*x[1] + np.sin(x[1]))
            if len(x) == 3:
                result[2] = x[2]
            return result
    
        from meshmode.mesh.processing import map_mesh
        mesh = map_mesh(mesh, m)
    
    
        dcoll = DiscretizationCollection(actx, mesh, order=4)
    
        from grudge.geometry import \
            forward_metric_derivative_mat, inverse_metric_derivative_mat
    
        mat = forward_metric_derivative_mat(actx, dcoll).dot(
            inverse_metric_derivative_mat(actx, dcoll))
    
    
        for i in range(mesh.dim):
            for j in range(mesh.dim):
                tgt = 1 if i == j else 0
    
    
                err = actx.np.linalg.norm(mat[i, j] - tgt, ord=np.inf)
    
                logger.info("error[%d, %d]: %.5e", i, j, err)
                assert err < 1.0e-12, (i, j, err)
    
    # }}}
    
    
    # {{{ mass operator trig integration
    
    @pytest.mark.parametrize("ambient_dim", [1, 2, 3])
    
    @pytest.mark.parametrize("discr_tag", [dof_desc.DISCR_TAG_BASE,
                                           dof_desc.DISCR_TAG_QUAD])
    def test_mass_mat_trig(actx_factory, ambient_dim, discr_tag):
    
        """Check the integral of some trig functions on an interval using the mass
    
        a = -4.0 * np.pi
        b = +9.0 * np.pi
        true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
    
        from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
    
        dd_quad = dof_desc.DOFDesc(dof_desc.DTAG_VOLUME_ALL, discr_tag)
        if discr_tag is dof_desc.DISCR_TAG_BASE:
            discr_tag_to_group_factory = {}
    
            discr_tag_to_group_factory = {
                discr_tag: QuadratureSimplexGroupFactory(order=2*order)
            }
    
        mesh = mgen.generate_regular_rect_mesh(
    
                a=(a,)*ambient_dim, b=(b,)*ambient_dim,
    
                nelements_per_axis=(nel_1d,)*ambient_dim, order=1)
    
        dcoll = DiscretizationCollection(
    
            actx, mesh, order=order,
            discr_tag_to_group_factory=discr_tag_to_group_factory
        )
    
        def f(x):
            return actx.np.sin(x[0])**2
    
        volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
        x_volm = thaw(actx, volm_disc.nodes())
        f_volm = f(x_volm)
        ones_volm = volm_disc.zeros(actx) + 1
    
        quad_disc = dcoll.discr_from_dd(dd_quad)
        x_quad = thaw(actx, quad_disc.nodes())
        f_quad = f(x_quad)
        ones_quad = quad_disc.zeros(actx) + 1
    
        mop_1 = op.mass(dcoll, dd_quad, f_quad)
        num_integral_1 = np.dot(actx.to_numpy(flatten(ones_volm)),
                                actx.to_numpy(flatten(mop_1)))
    
    
        err_1 = abs(num_integral_1 - true_integral)
    
        mop_2 = op.mass(dcoll, dd_quad, ones_quad)
        num_integral_2 = np.dot(actx.to_numpy(flatten(f_volm)),
                                actx.to_numpy(flatten(mop_2)))
    
    
        err_2 = abs(num_integral_2 - true_integral)
    
        assert err_2 < 1.0e-9, err_2
    
        if discr_tag is dof_desc.DISCR_TAG_BASE:
    
            # NOTE: `integral` always makes a square mass matrix and
            # `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
    
            num_integral_3 = np.dot(actx.to_numpy(flatten(f_quad)),
                                    actx.to_numpy(flatten(mop_2)))
    
            err_3 = abs(num_integral_3 - true_integral)
            assert err_3 < 5.0e-10, err_3
    
    # {{{ mass operator on surface
    
    def _ellipse_surface_area(radius, aspect_ratio):
        # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
        eccentricity = 1.0 - (1/aspect_ratio)**2
    
        if abs(aspect_ratio - 2.0) < 1.0e-14:
            # NOTE: hardcoded value so we don't need scipy for the test
            ellip_e = 1.2110560275684594
        else:
    
            from scipy.special import ellipe        # pylint: disable=no-name-in-module
    
            ellip_e = ellipe(eccentricity)
    
        return 4.0 * radius * ellip_e
    
    
    def _spheroid_surface_area(radius, aspect_ratio):
        # https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
        a = 1.0
        c = aspect_ratio
    
        if a < c:
            e = np.sqrt(1.0 - (a/c)**2)
            return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
        else:
            e = np.sqrt(1.0 - (c/a)**2)
            return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))
    
    
    @pytest.mark.parametrize("name", [
        "2-1-ellipse", "spheroid", "box2d", "box3d"
        ])
    
    def test_mass_surface_area(actx_factory, name):
        actx = actx_factory()
    
    
        # {{{ cases
    
        if name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
            surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio)
        elif name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
            surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio)
        elif name == "box2d":
            from mesh_data import BoxMeshBuilder
            builder = BoxMeshBuilder(ambient_dim=2)
            surface_area = 1.0
        elif name == "box3d":
            from mesh_data import BoxMeshBuilder
            builder = BoxMeshBuilder(ambient_dim=3)
            surface_area = 1.0
        else:
            raise ValueError("unknown geometry name: %s" % name)
    
        # }}}
    
        # {{{ convergence
    
        from pytools.convergence import EOCRecorder
        eoc = EOCRecorder()
    
        for resolution in builder.resolutions:
            mesh = builder.get_mesh(resolution, builder.mesh_order)
    
            dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
            volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    
            logger.info("ndofs:     %d", volume_discr.ndofs)
    
            logger.info("nelements: %d", volume_discr.mesh.nelements)
    
            # {{{ compute surface area
    
    
            dd = dof_desc.DD_VOLUME
    
            ones_volm = volume_discr.zeros(actx) + 1
            flattened_mass_weights = flatten(op.mass(dcoll, dd, ones_volm))
            approx_surface_area = np.dot(actx.to_numpy(flatten(ones_volm)),
                                         actx.to_numpy(flattened_mass_weights))
    
    
            logger.info("surface: got {:.5e} / expected {:.5e}".format(
                approx_surface_area, surface_area))
            area_error = abs(approx_surface_area - surface_area) / abs(surface_area)
    
            # }}}
    
    
    Thomas Gibson's avatar
    Thomas Gibson committed
            # compute max element size
            h_max = op.h_max_from_volume(dcoll)
    
    
            eoc.add_data_point(h_max, area_error)
    
    
        # }}}
    
        logger.info("surface area error\n%s", str(eoc))
    
    
        assert eoc.max_error() < 3e-13 or eoc.order_estimate() > builder.order
    
    # {{{ mass inverse on surfaces
    
    
    @pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"])
    
    def test_surface_mass_operator_inverse(actx_factory, name):
    
        actx = actx_factory()
    
    
        # {{{ cases
    
        if name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        elif name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
        else:
            raise ValueError("unknown geometry name: %s" % name)
    
        # }}}
    
        # {{{ convergence
    
        from pytools.convergence import EOCRecorder
        eoc = EOCRecorder()
    
        for resolution in builder.resolutions:
            mesh = builder.get_mesh(resolution, builder.mesh_order)
    
            dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
            volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    
            logger.info("ndofs:     %d", volume_discr.ndofs)
    
            logger.info("nelements: %d", volume_discr.mesh.nelements)
    
            # {{{ compute inverse mass
    
    
            def f(x):
                return actx.np.cos(4.0 * x[0])
    
    
            dd = dof_desc.DD_VOLUME
    
            x_volm = thaw(actx, volume_discr.nodes())
            f_volm = f(x_volm)
    
            f_inv = op.inverse_mass(
    
                dcoll, op.mass(dcoll, dd, f_volm)
            )
    
    
            inv_error = op.norm(dcoll, f_volm - f_inv, 2) / op.norm(dcoll, f_volm, 2)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
            # compute max element size
            h_max = op.h_max_from_volume(dcoll)
    
    
            eoc.add_data_point(h_max, inv_error)
    
        # }}}
    
        logger.info("inverse mass error\n%s", str(eoc))
    
    
        # NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the
        # safe side, choose a slightly larger tolerance
        assert eoc.max_error() < 1.0e-14
    
    # }}}
    
    
    # {{{ surface face normal orthogonality
    
    @pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
    
    def test_face_normal_surface(actx_factory, mesh_name):
    
        """Check that face normals are orthogonal to the surface normal"""
    
        actx = actx_factory()
    
    
        # {{{ geometry
    
        if mesh_name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        elif mesh_name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
        else:
            raise ValueError("unknown mesh name: %s" % mesh_name)
    
    
        mesh = builder.get_mesh(builder.resolutions[0], builder.mesh_order)
    
        dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
    
        volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    
        logger.info("ndofs:    %d", volume_discr.ndofs)
    
        logger.info("nelements: %d", volume_discr.mesh.nelements)
    
    
        # {{{ Compute surface and face normals
    
        from meshmode.discretization.connection import FACE_RESTR_INTERIOR
    
        from grudge.geometry import surface_normal
    
        dv = dof_desc.DD_VOLUME
        df = dof_desc.as_dofdesc(FACE_RESTR_INTERIOR)
    
    
        ambient_dim = mesh.ambient_dim
    
        surf_normal = op.project(
            dcoll, dv, df,
            surface_normal(actx, dcoll,
                           dim=dim, dd=dv).as_vector(dtype=object)
        )
    
        surf_normal = surf_normal / actx.np.sqrt(sum(surf_normal**2))
    
        face_normal_i = thaw(actx, op.normal(dcoll, df))
        face_normal_e = dcoll.opposite_face_connection()(face_normal_i)
    
    
        if mesh.ambient_dim == 3:
    
            from grudge.geometry import pseudoscalar, area_element
    
            # NOTE: there's only one face tangent in 3d
    
            face_tangent = (
                pseudoscalar(actx, dcoll, dim=dim-1, dd=df)
                / area_element(actx, dcoll, dim=dim-1, dd=df)
            ).as_vector(dtype=object)
    
        def _eval_error(x):
    
            return op.norm(dcoll, x, np.inf, dd=df)
    
        rtol = 1.0e-14
    
        # check interpolated surface normal is orthogonal to face normal
    
        error = _eval_error(surf_normal.dot(face_normal_i))
    
        logger.info("error[n_dot_i]:    %.5e", error)
        assert error < rtol
    
        # check angle between two neighboring elements
    
        error = _eval_error(face_normal_i.dot(face_normal_e) + 1.0)
    
        logger.info("error[i_dot_e]:    %.5e", error)
        assert error > rtol
    
        # check orthogonality with face tangent
        if ambient_dim == 3:
    
            error = _eval_error(face_tangent.dot(face_normal_i))
            logger.info("error[t_dot_i]:  %.5e", error)
    
            assert error < 5 * rtol
    
        # }}}
    
    # }}}
    
    
    # {{{ diff operator
    
    @pytest.mark.parametrize("dim", [1, 2, 3])
    
    def test_tri_diff_mat(actx_factory, dim, order=4):
    
        """Check differentiation matrix along the coordinate axes on a disk
    
        Uses sines as the function to differentiate.
        """
    
    
    
        from pytools.convergence import EOCRecorder
        axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
    
    
        def f(x, axis):
            return actx.np.sin(3*x[axis])
    
        def df(x, axis):
            return 3*actx.np.cos(3*x[axis])
    
    
        for n in [4, 8, 16]:
    
            mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
    
                    nelements_per_axis=(n,)*dim, order=4)
    
            dcoll = DiscretizationCollection(actx, mesh, order=4)
            volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
            x = thaw(actx, volume_discr.nodes())
    
                df_num = op.local_grad(dcoll, f(x, axis))[axis]
                df_volm = df(x, axis)
    
                linf_error = actx.np.linalg.norm(df_num - df_volm, ord=np.inf)
    
                axis_eoc_recs[axis].add_data_point(1/n, linf_error)
    
        for axis, eoc_rec in enumerate(axis_eoc_recs):
    
            logger.info("axis %d\n%s", axis, eoc_rec)
    
            assert eoc_rec.order_estimate() > order - 0.25
    
    # }}}
    
    
    # {{{ divergence theorem
    
    def test_2d_gauss_theorem(actx_factory):
    
        """Verify Gauss's theorem explicitly on a mesh"""
    
    
        pytest.importorskip("meshpy")
    
    
        from meshpy.geometry import make_circle, GeometryBuilder
        from meshpy.triangle import MeshInfo, build
    
        geob = GeometryBuilder()
        geob.add_geometry(*make_circle(1))
        mesh_info = MeshInfo()
        geob.set(mesh_info)
    
        mesh_info = build(mesh_info)
    
        from meshmode.mesh.io import from_meshpy
    
        from meshmode.mesh import BTAG_ALL
    
    
        mesh = from_meshpy(mesh_info, order=1)
    
    
        dcoll = DiscretizationCollection(actx, mesh, order=2)
        volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
        x_volm = thaw(actx, volm_disc.nodes())
    
                actx.np.sin(3*x[0]) + actx.np.cos(3*x[1]),
                actx.np.sin(2*x[0]) + actx.np.cos(x[1])
            )
    
        f_volm = f(x_volm)
        int_1 = op.integral(dcoll, op.local_div(dcoll, f_volm))
    
        prj_f = op.project(dcoll, "vol", BTAG_ALL, f_volm)
        normal = thaw(actx, op.normal(dcoll, BTAG_ALL))
        int_2 = op.integral(dcoll, prj_f.dot(normal), dd=BTAG_ALL)
    
        assert abs(int_1 - int_2) < 1e-13
    
    
    @pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
    
    def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False):
    
        r"""Check the surface divergence theorem.
    
            .. math::
    
                \int_Sigma \phi \nabla_i f_i =
                \int_\Sigma \nabla_i \phi f_i +
                \int_\Sigma \kappa \phi f_i n_i +
                \int_{\partial \Sigma} \phi f_i m_i
    
            where :math:`n_i` is the surface normal and :class:`m_i` is the
            face normal (which should be orthogonal to both the surface normal
            and the face tangent).
        """
    
        actx = actx_factory()
    
    
        # {{{ cases
    
        if mesh_name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        elif mesh_name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
        elif mesh_name == "circle":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
        elif mesh_name == "starfish":
            from mesh_data import StarfishMeshBuilder
            builder = StarfishMeshBuilder()
        elif mesh_name == "sphere":
            from mesh_data import SphereMeshBuilder
            builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
        else:
            raise ValueError("unknown mesh name: %s" % mesh_name)
    
        # }}}
    
        # {{{ convergene
    
        def f(x):
    
            return flat_obj_array(
                actx.np.sin(3*x[1]) + actx.np.cos(3*x[0]) + 1.0,
                actx.np.sin(2*x[0]) + actx.np.cos(x[1]),
                3.0 * actx.np.cos(x[0] / 2) + actx.np.cos(x[1]),
            )[:ambient_dim]
    
    
        from pytools.convergence import EOCRecorder
        eoc_global = EOCRecorder()
        eoc_local = EOCRecorder()
    
        theta = np.pi / 3.33
        ambient_dim = builder.ambient_dim
        if ambient_dim == 2:
            mesh_rotation = np.array([
                [np.cos(theta), -np.sin(theta)],
                [np.sin(theta), np.cos(theta)],
                ])
        else:
            mesh_rotation = np.array([
                [1.0, 0.0, 0.0],
                [0.0, np.cos(theta), -np.sin(theta)],
                [0.0, np.sin(theta), np.cos(theta)],
                ])
    
        mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]
    
        for i, resolution in enumerate(builder.resolutions):
            from meshmode.mesh.processing import affine_map
    
            from meshmode.discretization.connection import FACE_RESTR_ALL
    
    
            mesh = builder.get_mesh(resolution, builder.mesh_order)
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
            mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset)
    
    
            from meshmode.discretization.poly_element import \
                    QuadratureSimplexGroupFactory
    
    
            qtag = dof_desc.DISCR_TAG_QUAD
            dcoll = DiscretizationCollection(
    
                actx, mesh, order=builder.order,
                discr_tag_to_group_factory={
    
                    qtag: QuadratureSimplexGroupFactory(2 * builder.order)
    
            volume = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    
            logger.info("ndofs:     %d", volume.ndofs)
    
            logger.info("nelements: %d", volume.mesh.nelements)
    
    
            dd = dof_desc.DD_VOLUME
    
            dq = dd.with_discr_tag(qtag)
    
            df = dof_desc.as_dofdesc(FACE_RESTR_ALL)
    
            ambient_dim = dcoll.ambient_dim
            dim = dcoll.dim
    
            f_num = f(thaw(actx, op.nodes(dcoll, dd=dd)))
            f_quad_num = f(thaw(actx, op.nodes(dcoll, dd=dq)))
    
            from grudge.geometry import surface_normal, summed_curvature
    
            kappa = summed_curvature(actx, dcoll, dim=dim, dd=dq)
            normal = surface_normal(actx, dcoll,
                                    dim=dim, dd=dq).as_vector(dtype=object)
            face_normal = thaw(actx, op.normal(dcoll, df))
            face_f = op.project(dcoll, dd, df, f_num)
    
    
            stiff = op.mass(dcoll, sum(op.local_d_dx(dcoll, i, f_num_i)
                                       for i, f_num_i in enumerate(f_num)))
            stiff_t = sum(op.weak_local_d_dx(dcoll, i, f_num_i)
                          for i, f_num_i in enumerate(f_num))
    
            kterm = op.mass(dcoll, dq, kappa * f_quad_num.dot(normal))
            flux = op.face_mass(dcoll, face_f.dot(face_normal))
    
            # sum everything up
    
            op_global = op.nodal_sum(dcoll, dd, stiff - (stiff_t + kterm))
            op_local = op.elementwise_sum(dcoll, dd, stiff - (stiff_t + kterm + flux))
    
            err_global = abs(op_global)
    
            err_local = op.norm(dcoll, op_local, np.inf)
    
            logger.info("errors: global %.5e local %.5e", err_global, err_local)
    
            # compute max element size
    
    Thomas Gibson's avatar
    Thomas Gibson committed
            h_max = op.h_max_from_volume(dcoll)
    
            eoc_global.add_data_point(h_max, err_global)
            eoc_local.add_data_point(h_max, err_local)
    
            if visualize:
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
                from grudge.shortcuts import make_visualizer
    
                vis = make_visualizer(dcoll, vis_order=builder.order)
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
                filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu"
    
                vis.write_vtk_file(filename, [
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
                    ("r", actx.np.log10(op_local))
                    ], overwrite=True)
    
    
        # }}}
    
        order = min(builder.order, builder.mesh_order) - 0.5
        logger.info("\n%s", str(eoc_global))
        logger.info("\n%s", str(eoc_local))
    
        assert eoc_global.max_error() < 1.0e-12 \
    
                or eoc_global.order_estimate() > order - 0.5
    
    
        assert eoc_local.max_error() < 1.0e-12 \
    
                or eoc_local.order_estimate() > order - 0.5
    
    # }}}
    
    
    # {{{ models: advection
    
    @pytest.mark.parametrize(("mesh_name", "mesh_pars"), [
    
        ("segment", [8, 16, 32]),
    
        ("disk", [0.1, 0.05]),
        ("rect2", [4, 8]),
        ("rect3", [4, 6]),
    
        ("warped2", [4, 8]),
    
    @pytest.mark.parametrize("op_type", ["strong", "weak"])
    
    @pytest.mark.parametrize("flux_type", ["central"])
    
    @pytest.mark.parametrize("order", [3, 4, 5])
    
    # test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)'
    
    def test_convergence_advec(actx_factory, mesh_name, mesh_pars, op_type, flux_type,
    
            order, visualize=False):
    
        """Test whether 2D advection actually converges"""
    
    
        from pytools.convergence import EOCRecorder
        eoc_rec = EOCRecorder()
    
        for mesh_par in mesh_pars:
    
            if mesh_name == "segment":
    
                mesh = mgen.generate_box_mesh(
    
                    [np.linspace(-1.0, 1.0, mesh_par)],
                    order=order)
    
                dim = 1
                dt_factor = 1.0
            elif mesh_name == "disk":
    
                pytest.importorskip("meshpy")
    
                from meshpy.geometry import make_circle, GeometryBuilder
                from meshpy.triangle import MeshInfo, build
    
                geob = GeometryBuilder()
                geob.add_geometry(*make_circle(1))
                mesh_info = MeshInfo()
                geob.set(mesh_info)
    
                mesh_info = build(mesh_info, max_volume=mesh_par)
    
                from meshmode.mesh.io import from_meshpy
                mesh = from_meshpy(mesh_info, order=1)
                dim = 2
                dt_factor = 4
            elif mesh_name.startswith("rect"):
    
                dim = int(mesh_name[-1:])
    
                mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
    
                        nelements_per_axis=(mesh_par,)*dim, order=4)
    
                if dim == 2:
                    dt_factor = 4
                elif dim == 3:
                    dt_factor = 2
                else:
                    raise ValueError("dt_factor not known for %dd" % dim)
            elif mesh_name.startswith("warped"):
                dim = int(mesh_name[-1:])
    
                mesh = mgen.generate_warped_rect_mesh(dim, order=order,
                        nelements_side=mesh_par)
    
                if dim == 2:
                    dt_factor = 4
                elif dim == 3:
                    dt_factor = 2
                else:
                    raise ValueError("dt_factor not known for %dd" % dim)
            else:
                raise ValueError("invalid mesh name: " + mesh_name)
    
            v = np.array([0.27, 0.31, 0.1])[:dim]
            norm_v = la.norm(v)
    
            def f(x):
    
                return actx.np.sin(10*x)
    
            def u_analytic(x, t=0):
                return f(-v.dot(x)/norm_v + t*norm_v)
    
            from grudge.models.advection import (
    
                StrongAdvectionOperator, WeakAdvectionOperator
            )
    
            from meshmode.mesh import BTAG_ALL
    
    
            dcoll = DiscretizationCollection(actx, mesh, order=order)
            op_class = {"strong": StrongAdvectionOperator,
                        "weak": WeakAdvectionOperator}[op_type]
            adv_operator = op_class(dcoll, v,
                                    inflow_u=lambda t: u_analytic(
                                        thaw(actx, op.nodes(dcoll, dd=BTAG_ALL)),
                                        t=t
                                    ),
                                    flux_type=flux_type)
    
            nodes = thaw(actx, op.nodes(dcoll))
            u = u_analytic(nodes, t=0)
    
                return adv_operator.operator(t, u)
    
    
            if dim == 3:
                final_time = 0.1
            else:
                final_time = 0.2
    
    
            h_max = op.h_max_from_volume(dcoll, dim=dcoll.ambient_dim)
    
            dt = dt_factor * h_max/order**2
    
            nsteps = (final_time // dt) + 1
            dt = final_time/nsteps + 1e-15
    
            from grudge.shortcuts import set_up_rk4
            dt_stepper = set_up_rk4("u", dt, u, rhs)
    
            last_u = None
    
            from grudge.shortcuts import make_visualizer
    
            vis = make_visualizer(dcoll, vis_order=order)
    
    
            step = 0
    
            for event in dt_stepper.run(t_end=final_time):
                if isinstance(event, dt_stepper.StateComputed):
                    step += 1
    
                    logger.debug("[%04d] t = %.5f", step, event.t)
    
    
                    last_t = event.t
                    last_u = event.state_component
    
                    if visualize:
    
                        vis.write_vtk_file(
                            "fld-%s-%04d.vtu" % (mesh_par, step),
                            [("u", event.state_component)]
                        )
    
            error_l2 = op.norm(
                dcoll,
                last_u - u_analytic(nodes, t=last_t),
                2
            )
    
            logger.info("h_max %.5e error %.5e", h_max, error_l2)
    
            eoc_rec.add_data_point(h_max, error_l2)
    
        logger.info("\n%s", eoc_rec.pretty_print(
    
            abscissa_label="h",
            error_label="L2 Error"))
    
        if mesh_name.startswith("warped"):
            # NOTE: curvilinear meshes are hard
    
            assert eoc_rec.order_estimate() > order - 0.5
    
        else:
            assert eoc_rec.order_estimate() > order
    
    # }}}
    
    
    # {{{ models: maxwell
    
    @pytest.mark.parametrize("order", [3, 4, 5])
    
    def test_convergence_maxwell(actx_factory,  order):
    
        """Test whether 3D Maxwell's actually converges"""
    
    
        from pytools.convergence import EOCRecorder
        eoc_rec = EOCRecorder()
    
        dims = 3
        ns = [4, 6, 8]
        for n in ns:
    
            mesh = mgen.generate_regular_rect_mesh(
    
            discr = DiscretizationCollection(actx, mesh, order=order)
    
    
            epsilon = 1
            mu = 1
    
            from grudge.models.em import get_rectangular_cavity_mode
            sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
    
            analytic_sol = bind(discr, sym_mode)
    
            fields = analytic_sol(actx, t=0, epsilon=epsilon, mu=mu)
    
    
            from grudge.models.em import MaxwellOperator
            op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims)
            op.check_bc_coverage(mesh)
            bound_op = bind(discr, op.sym_operator())
    
            def rhs(t, w):
    
                return bound_op(t=t, w=w)
    
    
            dt = 0.002
            final_t = dt * 5
            nsteps = int(final_t/dt)
    
            from grudge.shortcuts import set_up_rk4
            dt_stepper = set_up_rk4("w", dt, fields, rhs)
    
    
            logger.info("dt %.5e nsteps %5d", dt, nsteps)
    
    
            norm = bind(discr, sym.norm(2, sym.var("u")))
    
            step = 0
            for event in dt_stepper.run(t_end=final_t):
                if isinstance(event, dt_stepper.StateComputed):
                    assert event.component_id == "w"
                    esc = event.state_component
    
                    step += 1
    
                    logger.debug("[%04d] t = %.5e", step, event.t)
    
            sol = analytic_sol(actx, mu=mu, epsilon=epsilon, t=step * dt)
            vals = [norm(u=(esc[i] - sol[i])) / norm(u=sol[i]) for i in range(5)] # noqa E501
    
            total_error = sum(vals)
            eoc_rec.add_data_point(1.0/n, total_error)
    
    
        logger.info("\n%s", eoc_rec.pretty_print(
            abscissa_label="h",
            error_label="L2 Error"))
    
    
        assert eoc_rec.order_estimate() > order
    
    
    # }}}
    
    
    # {{{ models: variable coefficient advection oversampling
    
    @pytest.mark.parametrize("order", [2, 3, 4])
    
    def test_improvement_quadrature(actx_factory, order):
    
        """Test whether quadrature improves things and converges"""
        from grudge.models.advection import VariableCoefficientAdvectionOperator
        from pytools.convergence import EOCRecorder
    
        from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
    
        from meshmode.mesh import BTAG_ALL
    
        def gaussian_mode(x):
    
            source_width = 0.1
    
            return actx.np.exp(-np.dot(x, x) / source_width**2)
    
        def conv_test(descr, use_quad):
    
            logger.info("-" * 75)
            logger.info(descr)
            logger.info("-" * 75)
    
            eoc_rec = EOCRecorder()
    
    
            if use_quad:
                qtag = dof_desc.DISCR_TAG_QUAD
            else:
                qtag = None
    
    
            ns = [20, 25]
            for n in ns:
    
                mesh = mgen.generate_regular_rect_mesh(
    
                    a=(-0.5,)*dims,
                    b=(0.5,)*dims,
    
                if use_quad:
    
                    discr_tag_to_group_factory = {
    
                        qtag: QuadratureSimplexGroupFactory(order=4*order)
    
                    discr_tag_to_group_factory = {}
    
                dcoll = DiscretizationCollection(
    
                    actx, mesh, order=order,
                    discr_tag_to_group_factory=discr_tag_to_group_factory
                )
    
                nodes = thaw(actx, op.nodes(dcoll))
    
                def zero_inflow(dtag, t=0):
    
    Thomas Gibson's avatar
    Thomas Gibson committed
                    dd = dof_desc.DOFDesc(dtag, qtag)
    
                    return dcoll.discr_from_dd(dd).zeros(actx)
    
                adv_op = VariableCoefficientAdvectionOperator(
                    dcoll,
                    flat_obj_array(-1*nodes[1], nodes[0]),
                    lambda t: zero_inflow(BTAG_ALL, t=t),
                    flux_type="upwind",
                    quad_tag=qtag
                )
    
                total_error = op.norm(
                    dcoll, adv_op.operator(0, gaussian_mode(nodes)), 2
                )
    
                eoc_rec.add_data_point(1.0/n, total_error)
    
    
            logger.info("\n%s", eoc_rec.pretty_print(
                abscissa_label="h",
                error_label="L2 Error"))
    
    
            return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history])
    
    
        eoc, errs = conv_test("no quadrature", False)
        q_eoc, q_errs = conv_test("with quadrature", True)
    
        assert q_eoc > eoc
        assert (q_errs < errs).all()
    
    # }}}
    
    
    # {{{ operator collector determinism
    
    Matt Wala's avatar
    Matt Wala committed
    def test_op_collector_order_determinism():
        class TestOperator(sym.Operator):
    
            def __init__(self):
    
                sym.Operator.__init__(self, dof_desc.DD_VOLUME, dof_desc.DD_VOLUME)
    
    Matt Wala's avatar
    Matt Wala committed
    
            mapper_method = "map_test_operator"
    
        from grudge.symbolic.mappers import BoundOperatorCollector
    
        class TestBoundOperatorCollector(BoundOperatorCollector):
    
            def map_test_operator(self, expr):
                return self.map_operator(expr)
    
        v0 = sym.var("v0")
        ob0 = sym.OperatorBinding(TestOperator(), v0)
    
        v1 = sym.var("v1")
        ob1 = sym.OperatorBinding(TestOperator(), v1)
    
        # The output order isn't significant, but it should always be the same.
        assert list(TestBoundOperatorCollector(TestOperator)(ob0 + ob1)) == [ob0, ob1]
    
    
    Matt Wala's avatar
    Matt Wala committed
    
    
    def test_bessel(actx_factory):
        actx = actx_factory()