Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pyopencl as cl
from meshmode.array_context import PyOpenCLArrayContext
from meshmode.dof_array import unflatten, flatten, flat_norm
from pytools.obj_array import flat_obj_array, make_obj_array
from grudge import sym, bind, DGDiscretizationWithBoundaries
pytest_generate_tests_for_pyopencl
as pytest_generate_tests)
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
@pytest.mark.parametrize("dim", [2, 3])
def test_inverse_metric(ctx_factory, dim):
from meshmode.mesh.generation import generate_regular_rect_mesh
Andreas Klöckner
committed
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(6,)*dim, order=4)
def m(x):
result = np.empty_like(x)
result[0] = (
1.5*x[0] + np.cos(x[0])
+ 0.1*np.sin(10*x[1]))
result[1] = (
0.05*np.cos(10*x[0])
+ 1.3*x[1] + np.sin(x[1]))
if len(x) == 3:
result[2] = x[2]
return result
from meshmode.mesh.processing import map_mesh
mesh = map_mesh(mesh, m)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
sym_op = (
sym.forward_metric_derivative_mat(mesh.dim)
.dot(
sym.inverse_metric_derivative_mat(mesh.dim)
)
.reshape(-1))
op = bind(discr, sym_op)
mat = op(actx).reshape(mesh.dim, mesh.dim)
for i in range(mesh.dim):
for j in range(mesh.dim):
tgt = 1 if i == j else 0
logger.info("error[%d, %d]: %.5e", i, j, err)
assert err < 1.0e-12, (i, j, err)
# }}}
# {{{ mass operator trig integration
@pytest.mark.parametrize("ambient_dim", [1, 2, 3])
@pytest.mark.parametrize("quad_tag", [sym.QTAG_NONE, "OVSMP"])
def test_mass_mat_trig(ctx_factory, ambient_dim, quad_tag):
"""Check the integral of some trig functions on an interval using the mass
queue = cl.CommandQueue(cl_ctx)
nelements = 17
order = 4
a = -4.0 * np.pi
b = +9.0 * np.pi
true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
dd_quad = sym.DOFDesc(sym.DTAG_VOLUME_ALL, quad_tag)
if quad_tag is sym.QTAG_NONE:
quad_tag_to_group_factory = {}
else:
quad_tag_to_group_factory = {
quad_tag: QuadratureSimplexGroupFactory(order=2*order)
}
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(a,)*ambient_dim, b=(b,)*ambient_dim,
n=(nelements,)*ambient_dim, order=1)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
def _get_variables_on(dd):
sym_f = sym.var("f", dd=dd)
sym_x = sym.nodes(ambient_dim, dd=dd)
sym_ones = sym.Ones(dd)
return sym_f, sym_x, sym_ones
sym_f, sym_x, sym_ones = _get_variables_on(sym.DD_VOLUME)
f_volm = actx.to_numpy(flatten(bind(discr, sym.cos(sym_x[0])**2)(actx)))
ones_volm = actx.to_numpy(flatten(bind(discr, sym_ones)(actx)))
sym_f, sym_x, sym_ones = _get_variables_on(dd_quad)
f_quad = bind(discr, sym.cos(sym_x[0])**2)(actx)
ones_quad = bind(discr, sym_ones)(actx)
mass_op = bind(discr, sym.MassOperator(dd_quad, sym.DD_VOLUME)(sym_f))
num_integral_1 = np.dot(ones_volm, actx.to_numpy(flatten(mass_op(f=f_quad))))
err_1 = abs(num_integral_1 - true_integral)
assert err_1 < 1e-9, err_1
num_integral_2 = np.dot(f_volm, actx.to_numpy(flatten(mass_op(f=ones_quad))))
err_2 = abs(num_integral_2 - true_integral)
assert err_2 < 1.0e-9, err_2
if quad_tag is sym.QTAG_NONE:
# NOTE: `integral` always makes a square mass matrix and
# `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
num_integral_3 = bind(discr,
sym.integral(sym_f, dd=dd_quad))(f=f_quad)
err_3 = abs(num_integral_3 - true_integral)
assert err_3 < 5.0e-10, err_3
# }}}
# {{{ mass operator surface area
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def _ellipse_surface_area(radius, aspect_ratio):
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
eccentricity = 1.0 - (1/aspect_ratio)**2
if abs(aspect_ratio - 2.0) < 1.0e-14:
# NOTE: hardcoded value so we don't need scipy for the test
ellip_e = 1.2110560275684594
else:
from scipy.special import ellipe
ellip_e = ellipe(eccentricity)
return 4.0 * radius * ellip_e
def _spheroid_surface_area(radius, aspect_ratio):
# https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
a = 1.0
c = aspect_ratio
if a < c:
e = np.sqrt(1.0 - (a/c)**2)
return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
else:
e = np.sqrt(1.0 - (c/a)**2)
return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))
@pytest.mark.parametrize("name", [
"2-1-ellipse", "spheroid", "box2d", "box3d"
])
def test_mass_surface_area(ctx_factory, name):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio)
elif name == "box2d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=2)
surface_area = 1.0
elif name == "box3d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=3)
surface_area = 1.0
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# {{{ compute surface area
dd = sym.DD_VOLUME
sym_op = sym.NodalSum(dd)(sym.MassOperator(dd, dd)(sym.Ones(dd)))
approx_surface_area = bind(discr, sym_op)(actx)
logger.info("surface: got {:.5e} / expected {:.5e}".format(
approx_surface_area, surface_area))
area_error = abs(approx_surface_area - surface_area) / abs(surface_area)
# }}}
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
eoc.add_data_point(h_max, area_error)
# }}}
logger.info("surface area error\n%s", str(eoc))
assert eoc.max_error() < 1.0e-14 \
# }}}
# {{{ surface mass inverse
@pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"])
def test_surface_mass_operator_inverse(ctx_factory, name):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# {{{ compute inverse mass
dd = sym.DD_VOLUME
sym_f = sym.cos(4.0 * sym.nodes(mesh.ambient_dim, dd)[0])
sym_op = sym.InverseMassOperator(dd, dd)(
sym.MassOperator(dd, dd)(sym.var("f")))
f = bind(discr, sym_f)(actx)
f_inv = bind(discr, sym_op)(actx, f=f)
inv_error = bind(discr,
sym.norm(2, sym.var("x") - sym.var("y"))
/ sym.norm(2, sym.var("y")))(actx, x=f_inv, y=f)
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
eoc.add_data_point(h_max, inv_error)
# }}}
logger.info("inverse mass error\n%s", str(eoc))
assert eoc.max_error() < 5.0e-09 \
# }}}
# {{{ surface face normal orthogonality
def _avg_face_normal(x, side=-1):
x_i = x
x_e = sym.OppositeInteriorFaceSwap()(x_i)
x_avg = (x_i + side * x_e) / 2.0
return x_avg / sym.sqrt(x_avg.dot(x_avg))
@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_face_normal_surface(ctx_factory, mesh_name):
"""Check that face normals are orthogonal to the surface normal"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
# {{{ geometry
if mesh_name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif mesh_name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown mesh name: %s" % mesh_name)
mesh = builder.get_mesh(builder.resolutions[0], builder.mesh_order)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# }}}
# {{{ symbolic
dv = sym.DD_VOLUME
df = sym.as_dofdesc(sym.FACE_RESTR_INTERIOR)
ambient_dim = mesh.ambient_dim
sym_surf_normal = sym.project(dv, df)(
sym.surface_normal(ambient_dim, dim=dim, dd=dv).as_vector()
)
sym_surf_normal = sym_surf_normal / sym.sqrt(sum(sym_surf_normal**2))
sym_surf_normal_avg = _avg_face_normal(sym_surf_normal, side=1.0)
sym_face_normal_i = sym.normal(df, ambient_dim, dim=dim - 1)
sym_face_normal_e = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_i)
sym_face_normal_avg = _avg_face_normal(sym_face_normal_i)
sym_face_normal_op = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_avg)
if mesh.ambient_dim == 3:
# NOTE: there's only one face tangent in 3d
sym_face_tangent = (
sym.pseudoscalar(ambient_dim, dim - 1, dd=df)
/ sym.area_element(ambient_dim, dim - 1, dd=df)).as_vector()
# }}}
# {{{ checks
def _eval_error(x):
return bind(discr, sym.norm(np.inf, sym.var("x", dd=df), dd=df))(actx, x=x)
surf_normal = bind(discr, sym_surf_normal)(actx)
surf_normal_avg = bind(discr, sym_surf_normal_avg)(actx)
face_normal_i = bind(discr, sym_face_normal_i)(actx)
face_normal_e = bind(discr, sym_face_normal_e)(actx)
face_normal_avg = bind(discr, sym_face_normal_avg)(actx)
face_normal_op = bind(discr, sym_face_normal_op)(actx)
# check interpolated surface normal is orthogonal to face normal
error = _eval_error(surf_normal.dot(face_normal_i))
logger.info("error[n_dot_i]: %.5e", error)
assert error < rtol
# check averaged ones are also orthogonal
error = _eval_error(surf_normal_avg.dot(face_normal_avg))
logger.info("error[a_dot_a]: %.5e", error)
assert error < rtol
# check averaged face normal and interpolated face normal
error = _eval_error(surf_normal.dot(face_normal_avg))
logger.info("error[n_dot_a]: %.5e", error)
assert error > rtol
# check angle between two neighboring elements
error = _eval_error(face_normal_i.dot(face_normal_e) + 1.0)
logger.info("error[i_dot_e]: %.5e", error)
assert error > rtol
# check uniqueness of normal on the two sides
face_normal_sum = face_normal_avg + face_normal_op
error = _eval_error(face_normal_sum.dot(face_normal_sum))
logger.info("error[a_plus_o]: %.5e", error)
assert error < rtol
# check orthogonality with face tangent
if ambient_dim == 3:
face_tangent = bind(discr, sym_face_tangent)(actx)
error = _eval_error(face_tangent.dot(face_normal_avg))
logger.info("error[t_dot_avg]: %.5e", error)
assert error < 5 * rtol
# }}}
# }}}
# {{{ diff operator
@pytest.mark.parametrize("dim", [1, 2, 3])
def test_tri_diff_mat(ctx_factory, dim, order=4):
"""Check differentiation matrix along the coordinate axes on a disk
Uses sines as the function to differentiate.
"""
queue = cl.CommandQueue(cl_ctx)
from meshmode.mesh.generation import generate_regular_rect_mesh
from pytools.convergence import EOCRecorder
axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(n,)*dim, order=4)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
nabla = sym.nabla(dim)
for axis in range(dim):
x = sym.nodes(dim)
f = bind(discr, sym.sin(3*x[axis]))(actx)
df = bind(discr, 3*sym.cos(3*x[axis]))(actx)
sym_op = nabla[axis](sym.var("f"))
bound_op = bind(discr, sym_op)
linf_error = flat_norm(df_num-df, np.Inf)
axis_eoc_recs[axis].add_data_point(1/n, linf_error)
for axis, eoc_rec in enumerate(axis_eoc_recs):
logger.info("axis %d\n%s", axis, eoc_rec)
# }}}
# {{{ divergence theorem
def test_2d_gauss_theorem(ctx_factory):
"""Verify Gauss's theorem explicitly on a mesh"""
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=2)
return flat_obj_array(
sym.sin(3*x[0])+sym.cos(3*x[1]),
sym.sin(2*x[0])+sym.cos(x[1]))
gauss_err = bind(discr,
sym.integral((
sym.nabla(2) * f(sym.nodes(2))
).sum())
sym.project("vol", sym.BTAG_ALL)(f(sym.nodes(2)))
.dot(sym.normal(sym.BTAG_ALL, 2)),
dd=sym.BTAG_ALL)
@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_surface_divergence_theorem(ctx_factory, mesh_name, visualize=False):
r"""Check the surface divergence theorem.
.. math::
\int_Sigma \phi \nabla_i f_i =
\int_\Sigma \nabla_i \phi f_i +
\int_\Sigma \kappa \phi f_i n_i +
\int_{\partial \Sigma} \phi f_i m_i
where :math:`n_i` is the surface normal and :class:`m_i` is the
face normal (which should be orthogonal to both the surface normal
and the face tangent).
"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# {{{ cases
if mesh_name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif mesh_name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
elif mesh_name == "circle":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
elif mesh_name == "starfish":
from mesh_data import StarfishMeshBuilder
builder = StarfishMeshBuilder()
elif mesh_name == "sphere":
from mesh_data import SphereMeshBuilder
builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
else:
raise ValueError("unknown mesh name: %s" % mesh_name)
# }}}
# {{{ convergene
def f(x):
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
sym.sin(3*x[1]) + sym.cos(3*x[0]) + 1.0,
sym.sin(2*x[0]) + sym.cos(x[1]),
3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]),
)[:ambient_dim]
from pytools.convergence import EOCRecorder
eoc_global = EOCRecorder()
eoc_local = EOCRecorder()
theta = np.pi / 3.33
ambient_dim = builder.ambient_dim
if ambient_dim == 2:
mesh_rotation = np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)],
])
else:
mesh_rotation = np.array([
[1.0, 0.0, 0.0],
[0.0, np.cos(theta), -np.sin(theta)],
[0.0, np.sin(theta), np.cos(theta)],
])
mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]
for i, resolution in enumerate(builder.resolutions):
from meshmode.mesh.processing import affine_map
mesh = builder.get_mesh(resolution, builder.mesh_order)
from meshmode.discretization.poly_element import \
QuadratureSimplexGroupFactory
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order,
quad_tag_to_group_factory={
"product": QuadratureSimplexGroupFactory(2 * builder.order)
})
volume = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume.ndofs)
logger.info("nelements: %d", volume.mesh.nelements)
dd = sym.DD_VOLUME
dq = dd.with_qtag("product")
df = sym.as_dofdesc(sym.FACE_RESTR_ALL)
ambient_dim = discr.ambient_dim
dim = discr.dim
# variables
sym_f = f(sym.nodes(ambient_dim, dd=dd))
sym_f_quad = f(sym.nodes(ambient_dim, dd=dq))
sym_kappa = sym.summed_curvature(ambient_dim, dim=dim, dd=dq)
sym_normal = sym.surface_normal(ambient_dim, dim=dim, dd=dq).as_vector()
sym_face_normal = sym.normal(df, ambient_dim, dim=dim - 1)
sym_face_f = sym.project(dd, df)(sym_f)
# operators
sym_stiff = sum(
sym.StiffnessOperator(d)(f) for d, f in enumerate(sym_f)
)
sym_stiff_t = sum(
sym.StiffnessTOperator(d)(f) for d, f in enumerate(sym_f)
)
sym_k = sym.MassOperator(dq, dd)(sym_kappa * sym_f_quad.dot(sym_normal))
sym_flux = sym.FaceMassOperator()(sym_face_f.dot(sym_face_normal))
sym_op_global = sym.NodalSum(dd)(
sym_stiff - (sym_stiff_t + sym_k))
sym_op_local = sym.ElementwiseSumOperator(dd)(
sym_stiff - (sym_stiff_t + sym_k + sym_flux))
# evaluate
op_global = bind(discr, sym_op_global)(actx)
op_local = bind(discr, sym_op_local)(actx)
err_global = abs(op_global)
err_local = bind(discr, sym.norm(np.inf, sym.var("x")))(actx, x=op_local)
logger.info("errors: global %.5e local %.5e", err_global, err_local)
# compute max element size
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
eoc_global.add_data_point(h_max, err_global)
eoc_local.add_data_point(h_max, err_local)
if visualize:
r = cl.array.to_device(queue, op_local)
r = cl.clmath.log10(cl.clmath.fabs(r) + 1.0e-16)
from meshmode.discretization.visualization import make_visualizer
vis = make_visualizer(queue, discr, vis_order=builder.order)
filename = "test_surface_divergence_theorem_error_{:04d}".format(i)
vis.write_vtk_file(filename, [
("r", r)
], overwrite=True, legend=False)
# }}}
order = min(builder.order, builder.mesh_order) - 0.5
logger.info("\n%s", str(eoc_global))
logger.info("\n%s", str(eoc_local))
assert eoc_global.max_error() < 1.0e-12 \
or eoc_global.order_estimate() > order - 0.5
assert eoc_local.max_error() < 1.0e-12 \
or eoc_local.order_estimate() > order - 0.5
# }}}
# {{{ models: advection
@pytest.mark.parametrize(("mesh_name", "mesh_pars"), [
("disk", [0.1, 0.05]),
("rect2", [4, 8]),
("rect3", [4, 6]),
])
@pytest.mark.parametrize("op_type", ["strong", "weak"])
@pytest.mark.parametrize("flux_type", ["central"])
@pytest.mark.parametrize("order", [3, 4, 5])
Andreas Klöckner
committed
# test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)'
def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type,
order, visualize=False):
"""Test whether 2D advection actually converges"""
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
for mesh_par in mesh_pars:
if mesh_name == "segment":
from meshmode.mesh.generation import generate_box_mesh
mesh = generate_box_mesh(
[np.linspace(-1.0, 1.0, mesh_par)],
order=order)
dim = 1
dt_factor = 1.0
elif mesh_name == "disk":
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
pytest.importorskip("meshpy")
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info, max_volume=mesh_par)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
dim = 2
dt_factor = 4
elif mesh_name.startswith("rect"):
dim = int(mesh_name[4:])
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(mesh_par,)*dim, order=4)
if dim == 2:
dt_factor = 4
elif dim == 3:
dt_factor = 2
else:
raise ValueError("dt_factor not known for %dd" % dim)
else:
raise ValueError("invalid mesh name: " + mesh_name)
v = np.array([0.27, 0.31, 0.1])[:dim]
norm_v = la.norm(v)
def f(x):
return sym.sin(10*x)
def u_analytic(x):
return f(
-v.dot(x)/norm_v
+ sym.var("t", sym.DD_SCALAR)*norm_v)
from grudge.models.advection import (
StrongAdvectionOperator, WeakAdvectionOperator)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order)
op_class = {
"strong": StrongAdvectionOperator,
"weak": WeakAdvectionOperator,
}[op_type]
op = op_class(v,
inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
flux_type=flux_type)
bound_op = bind(discr, op.sym_operator())
u = bind(discr, u_analytic(sym.nodes(dim)))(actx, t=0)
if dim == 3:
final_time = 0.1
else:
final_time = 0.2
h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim))(actx)
dt = dt_factor * h_max/order**2
nsteps = (final_time // dt) + 1
dt = final_time/nsteps + 1e-15
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("u", dt, u, rhs)
last_u = None
from grudge.shortcuts import make_visualizer
vis = make_visualizer(discr, vis_order=order)
step = 0
for event in dt_stepper.run(t_end=final_time):
if isinstance(event, dt_stepper.StateComputed):
step += 1
logger.debug("[%04d] t = %.5f", step, event.t)
last_t = event.t
last_u = event.state_component
if visualize:
vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step),
[("u", event.state_component)])
error_l2 = bind(discr,
sym.norm(2, sym.var("u")-u_analytic(sym.nodes(dim))))(
logger.info("h_max %.5e error %.5e", h_max, error_l2)
eoc_rec.add_data_point(h_max, error_l2)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
# }}}
# {{{ models: maxwell
@pytest.mark.parametrize("order", [3, 4, 5])
def test_convergence_maxwell(ctx_factory, order):
"""Test whether 3D Maxwell's actually converges"""
queue = cl.CommandQueue(cl_ctx)
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
dims = 3
ns = [4, 6, 8]
for n in ns:
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(0.0,)*dims,
b=(1.0,)*dims,
n=(n,)*dims)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order)
epsilon = 1
mu = 1
from grudge.models.em import get_rectangular_cavity_mode
sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
analytic_sol = bind(discr, sym_mode)
fields = analytic_sol(actx, t=0, epsilon=epsilon, mu=mu)
from grudge.models.em import MaxwellOperator
op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims)
op.check_bc_coverage(mesh)
bound_op = bind(discr, op.sym_operator())
def rhs(t, w):
dt = 0.002
final_t = dt * 5
nsteps = int(final_t/dt)
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("w", dt, fields, rhs)
logger.info("dt %.5e nsteps %5d", dt, nsteps)
norm = bind(discr, sym.norm(2, sym.var("u")))
step = 0
for event in dt_stepper.run(t_end=final_t):
if isinstance(event, dt_stepper.StateComputed):
assert event.component_id == "w"
esc = event.state_component
step += 1
logger.debug("[%04d] t = %.5e", step, event.t)
sol = analytic_sol(actx, mu=mu, epsilon=epsilon, t=step * dt)
vals = [norm(u=(esc[i] - sol[i])) / norm(u=sol[i]) for i in range(5)] # noqa E501
total_error = sum(vals)
eoc_rec.add_data_point(1.0/n, total_error)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
# }}}
# {{{ models: variable coefficient advection oversampling
@pytest.mark.parametrize("order", [2, 3, 4])
def test_improvement_quadrature(ctx_factory, order):
"""Test whether quadrature improves things and converges"""
from meshmode.mesh.generation import generate_regular_rect_mesh
from grudge.models.advection import VariableCoefficientAdvectionOperator
from pytools.convergence import EOCRecorder
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
dims = 2
sym_nds = sym.nodes(dims)
advec_v = flat_obj_array(-1*sym_nds[1], sym_nds[0])
op = VariableCoefficientAdvectionOperator(advec_v, 0, flux_type=flux)
def gaussian_mode():
source_width = 0.1
sym_x = sym.nodes(2)
return sym.exp(-np.dot(sym_x, sym_x) / source_width**2)
logger.info("-" * 75)
logger.info(descr)
logger.info("-" * 75)
eoc_rec = EOCRecorder()
ns = [20, 25]
for n in ns:
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dims,
b=(0.5,)*dims,
n=(n,)*dims,
order=order)
if use_quad:
quad_tag_to_group_factory = {
"product": QuadratureSimplexGroupFactory(order=4*order)
}
else:
quad_tag_to_group_factory = {"product": None}
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
bound_op = bind(discr, op.sym_operator())
fields = bind(discr, gaussian_mode())(actx, t=0)
norm = bind(discr, sym.norm(2, sym.var("u")))
esc = bound_op(u=fields)
total_error = norm(u=esc)
eoc_rec.add_data_point(1.0/n, total_error)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history])
eoc, errs = conv_test("no quadrature", False)
q_eoc, q_errs = conv_test("with quadrature", True)
assert q_eoc > eoc
assert (q_errs < errs).all()
assert q_eoc > order
# }}}
# {{{ operator collector determinism