Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np # noqa
import numpy.linalg as la # noqa
import pyopencl as cl # noqa
import pyopencl.array # noqa
import pyopencl.clmath # noqa
import pytest # noqa
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
import logging
logger = logging.getLogger(__name__)
Andreas Klöckner
committed
from grudge import sym, bind, DGDiscretizationWithBoundaries
Andreas Klöckner
committed
@pytest.mark.parametrize("dim", [2, 3])
def test_inverse_metric(ctx_factory, dim):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
from meshmode.mesh.generation import generate_regular_rect_mesh
Andreas Klöckner
committed
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(6,)*dim, order=4)
def m(x):
result = np.empty_like(x)
result[0] = (
1.5*x[0] + np.cos(x[0])
+ 0.1*np.sin(10*x[1]))
result[1] = (
0.05*np.cos(10*x[0])
+ 1.3*x[1] + np.sin(x[1]))
if len(x) == 3:
result[2] = x[2]
return result
from meshmode.mesh.processing import map_mesh
mesh = map_mesh(mesh, m)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4)
sym_op = (
sym.forward_metric_derivative_mat(mesh.dim)
.dot(
sym.inverse_metric_derivative_mat(mesh.dim)
)
.reshape(-1))
op = bind(discr, sym_op)
mat = op(queue).reshape(mesh.dim, mesh.dim)
for i in range(mesh.dim):
for j in range(mesh.dim):
tgt = 1 if i == j else 0
err = np.max(np.abs((mat[i, j] - tgt).get(queue=queue)))
print(i, j, err)
assert err < 1e-12, (i, j, err)
"""Check the integral of some trig functions on an interval using the mass
matrix
"""
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-4*np.pi,), b=(9*np.pi,),
n=(17,), order=1)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=8)
x = sym.nodes(1)
f = bind(discr, sym.cos(x[0])**2)(queue)
ones = bind(discr, sym.Ones(sym.DD_VOLUME))(queue)
mass_op = bind(discr, sym.MassOperator()(sym.var("f")))
Andreas Klöckner
committed
num_integral_1 = np.dot(ones.get(), mass_op(queue, f=f))
num_integral_2 = np.dot(f.get(), mass_op(queue, f=ones))
num_integral_3 = bind(discr, sym.integral(sym.var("f")))(queue, f=f)
true_integral = 13*np.pi/2
err_1 = abs(num_integral_1-true_integral)
err_2 = abs(num_integral_2-true_integral)
err_3 = abs(num_integral_3-true_integral)
assert err_1 < 1e-10
assert err_2 < 1e-10
assert err_3 < 1e-10
@pytest.mark.parametrize("dim", [1, 2, 3])
def test_tri_diff_mat(ctx_factory, dim, order=4):
"""Check differentiation matrix along the coordinate axes on a disk
Uses sines as the function to differentiate.
"""
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
from meshmode.mesh.generation import generate_regular_rect_mesh
from pytools.convergence import EOCRecorder
axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
for n in [10, 20]:
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(n,)*dim, order=4)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4)
nabla = sym.nabla(dim)
for axis in range(dim):
x = sym.nodes(dim)
f = bind(discr, sym.sin(3*x[axis]))(queue)
df = bind(discr, 3*sym.cos(3*x[axis]))(queue)
sym_op = nabla[axis](sym.var("f"))
bound_op = bind(discr, sym_op)
df_num = bound_op(queue, f=f)
linf_error = la.norm((df_num-df).get(), np.Inf)
axis_eoc_recs[axis].add_data_point(1/n, linf_error)
for axis, eoc_rec in enumerate(axis_eoc_recs):
print(axis)
print(eoc_rec)
assert eoc_rec.order_estimate() >= order
def test_2d_gauss_theorem(ctx_factory):
"""Verify Gauss's theorem explicitly on a mesh"""
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=2)
def f(x):
return sym.join_fields(
sym.sin(3*x[0])+sym.cos(3*x[1]),
sym.sin(2*x[0])+sym.cos(x[1]))
gauss_err = bind(discr,
sym.integral((
sym.nabla(2) * f(sym.nodes(2))
).sum())
sym.integral(
sym.interp("vol", sym.BTAG_ALL)(f(sym.nodes(2)))
.dot(sym.normal(sym.BTAG_ALL, 2)),
dd=sym.BTAG_ALL)
)(queue)
@pytest.mark.parametrize(("mesh_name", "mesh_pars"), [
("disk", [0.1, 0.05]),
("rect2", [4, 8]),
("rect3", [4, 6]),
])
@pytest.mark.parametrize("op_type", ["strong", "weak"])
@pytest.mark.parametrize("flux_type", ["upwind"])
@pytest.mark.parametrize("order", [3, 4, 5])
Andreas Klöckner
committed
# test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)'
def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type,
order, visualize=False):
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""Test whether 2D advection actually converges"""
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
for mesh_par in mesh_pars:
if mesh_name == "disk":
pytest.importorskip("meshpy")
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info, max_volume=mesh_par)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
h = np.sqrt(mesh_par)
dim = 2
dt_factor = 4
elif mesh_name.startswith("rect"):
dim = int(mesh_name[4:])
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(mesh_par,)*dim, order=4)
h = 1/mesh_par
if dim == 2:
dt_factor = 4
elif dim == 3:
dt_factor = 2
else:
raise ValueError("dt_factor not known for %dd" % dim)
else:
raise ValueError("invalid mesh name: " + mesh_name)
v = np.array([0.27, 0.31, 0.1])[:dim]
norm_v = la.norm(v)
def f(x):
return sym.sin(10*x)
def u_analytic(x):
return f(
-v.dot(x)/norm_v
+ sym.var("t", sym.DD_SCALAR)*norm_v)
from grudge.models.advection import (
StrongAdvectionOperator, WeakAdvectionOperator)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
op_class = {
"strong": StrongAdvectionOperator,
"weak": WeakAdvectionOperator,
}[op_type]
op = op_class(v,
inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
flux_type=flux_type)
bound_op = bind(discr, op.sym_operator())
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
u = bind(discr, u_analytic(sym.nodes(dim)))(queue, t=0)
def rhs(t, u):
return bound_op(queue, t=t, u=u)
if dim == 3:
final_time = 0.1
else:
final_time = 0.2
dt = dt_factor * h/order**2
nsteps = (final_time // dt) + 1
dt = final_time/nsteps + 1e-15
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("u", dt, u, rhs)
last_u = None
from grudge.shortcuts import make_visualizer
vis = make_visualizer(discr, vis_order=order)
step = 0
for event in dt_stepper.run(t_end=final_time):
if isinstance(event, dt_stepper.StateComputed):
step += 1
print(event.t)
last_t = event.t
last_u = event.state_component
if visualize:
vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step),
[("u", event.state_component)])
error_l2 = bind(discr,
sym.norm(2, sym.var("u")-u_analytic(sym.nodes(dim))))(
Andreas Klöckner
committed
queue, t=last_t, u=last_u)
print(h, error_l2)
eoc_rec.add_data_point(h, error_l2)
print(eoc_rec.pretty_print(abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
@pytest.mark.parametrize("order", [3, 4, 5])
def test_convergence_maxwell(ctx_factory, order):
"""Test whether 3D maxwells actually converges"""
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
dims = 3
ns = [4, 6, 8]
for n in ns:
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(0.0,)*dims,
b=(1.0,)*dims,
n=(n,)*dims)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
epsilon = 1
mu = 1
from grudge.models.em import get_rectangular_cavity_mode
sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
analytic_sol = bind(discr, sym_mode)
fields = analytic_sol(queue, t=0, epsilon=epsilon, mu=mu)
from grudge.models.em import MaxwellOperator
op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims)
op.check_bc_coverage(mesh)
bound_op = bind(discr, op.sym_operator())
def rhs(t, w):
return bound_op(queue, t=t, w=w)
dt = 0.002
final_t = dt * 5
nsteps = int(final_t/dt)
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("w", dt, fields, rhs)
print("dt=%g nsteps=%d" % (dt, nsteps))
norm = bind(discr, sym.norm(2, sym.var("u")))
step = 0
for event in dt_stepper.run(t_end=final_t):
if isinstance(event, dt_stepper.StateComputed):
assert event.component_id == "w"
esc = event.state_component
step += 1
print(step)
sol = analytic_sol(queue, mu=mu, epsilon=epsilon, t=step * dt)
vals = [norm(queue, u=(esc[i] - sol[i])) / norm(queue, u=sol[i]) for i in range(5)] # noqa E501
total_error = sum(vals)
eoc_rec.add_data_point(1.0/n, total_error)
print(eoc_rec.pretty_print(abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
@pytest.mark.parametrize("order", [2, 3, 4])
def test_improvement_quadrature(ctx_factory, order):
"""Test whether quadrature improves things and converges"""
from meshmode.mesh.generation import generate_regular_rect_mesh
from grudge.models.advection import VariableCoefficientAdvectionOperator
from pytools.convergence import EOCRecorder
from pytools.obj_array import join_fields
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
dims = 2
sym_nds = sym.nodes(dims)
advec_v = join_fields(-1*sym_nds[1], sym_nds[0])
flux = "upwind"
op = VariableCoefficientAdvectionOperator(2, advec_v, 0, flux_type=flux)
def gaussian_mode():
source_width = 0.1
sym_x = sym.nodes(2)
return sym.exp(-np.dot(sym_x, sym_x) / source_width**2)
def conv_test(descr, use_quad):
print("-"*75)
print(descr)
print("-"*75)
eoc_rec = EOCRecorder()
ns = [20, 25]
for n in ns:
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dims,
b=(0.5,)*dims,
n=(n,)*dims,
order=order)
if use_quad:
quad_tag_to_group_factory = {
"product": QuadratureSimplexGroupFactory(order=4*order)
}
else:
quad_tag_to_group_factory = {"product": None}
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
bound_op = bind(discr, op.sym_operator())
fields = bind(discr, gaussian_mode())(queue, t=0)
norm = bind(discr, sym.norm(2, sym.var("u")))
esc = bound_op(queue, u=fields)
total_error = norm(queue, u=esc)
eoc_rec.add_data_point(1.0/n, total_error)
print(eoc_rec.pretty_print(abscissa_label="h", error_label="LInf Error"))
return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history])
eoc, errs = conv_test("no quadrature", False)
q_eoc, q_errs = conv_test("with quadrature", True)
assert q_eoc > eoc
assert (q_errs < errs).all()
assert q_eoc > order
def test_foreign_points(ctx_factory):
pytest.importorskip("sumpy")
import sumpy.point_calculus as pc
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
dim = 2
cp = pc.CalculusPatch(np.zeros(dim))
from grudge.discretization import PointsDiscretization
pdiscr = PointsDiscretization(cl.array.to_device(queue, cp.points))
bind(pdiscr, sym.nodes(dim)**2)(queue)
def test_op_collector_order_determinism():
class TestOperator(sym.Operator):
def __init__(self):
sym.Operator.__init__(self, sym.DD_VOLUME, sym.DD_VOLUME)
mapper_method = "map_test_operator"
from grudge.symbolic.mappers import BoundOperatorCollector
class TestBoundOperatorCollector(BoundOperatorCollector):
def map_test_operator(self, expr):
return self.map_operator(expr)
v0 = sym.var("v0")
ob0 = sym.OperatorBinding(TestOperator(), v0)
v1 = sym.var("v1")
ob1 = sym.OperatorBinding(TestOperator(), v1)
# The output order isn't significant, but it should always be the same.
assert list(TestBoundOperatorCollector(TestOperator)(ob0 + ob1)) == [ob0, ob1]
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
def test_bessel(ctx_factory):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
dims = 2
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(0.1,)*dims,
b=(1.0,)*dims,
n=(8,)*dims)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=3)
nodes = sym.nodes(dims)
r = sym.cse(sym.sqrt(nodes[0]**2 + nodes[1]**2))
# https://dlmf.nist.gov/10.6.1
n = 3
bessel_zero = (
sym.bessel_j(n+1, r)
+ sym.bessel_j(n-1, r)
- 2*n/r * sym.bessel_j(n, r))
z = bind(discr, sym.norm(2, bessel_zero))(queue)
assert z < 1e-15
def test_external_call(ctx_factory):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
def double(queue, x):
return 2 * x
from meshmode.mesh.generation import generate_regular_rect_mesh
dims = 2
mesh = generate_regular_rect_mesh(a=(0,) * dims, b=(1,) * dims, n=(4,) * dims)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=1)
ones = sym.Ones(sym.DD_VOLUME)
op = (
ones * 3
from grudge.function_registry import (
base_function_registry, register_external_function)
freg = register_external_function(
base_function_registry,
"double",
implementation=double,
dd=sym.DD_VOLUME)
bound_op = bind(discr, op, function_registry=freg)
result = bound_op(queue, double=double)
assert (result == 5).get().all()
# $ python test_grudge.py 'test_routine()'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else: