Skip to content
Snippets Groups Projects
test_grudge.py 17.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • from __future__ import division, absolute_import, print_function
    
    __copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    import numpy as np  # noqa
    import numpy.linalg as la  # noqa
    import pyopencl as cl  # noqa
    import pyopencl.array  # noqa
    import pyopencl.clmath  # noqa
    
    import pytest  # noqa
    
    from pyopencl.tools import (  # noqa
            pytest_generate_tests_for_pyopencl as pytest_generate_tests)
    
    import logging
    logger = logging.getLogger(__name__)
    
    
    from grudge import sym, bind, DGDiscretizationWithBoundaries
    
    def test_inverse_metric(ctx_factory, dim):
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
    
        mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
                n=(6,)*dim, order=4)
    
    
        def m(x):
            result = np.empty_like(x)
            result[0] = (
                    1.5*x[0] + np.cos(x[0])
                    + 0.1*np.sin(10*x[1]))
            result[1] = (
                    0.05*np.cos(10*x[0])
                    + 1.3*x[1] + np.sin(x[1]))
            if len(x) == 3:
                result[2] = x[2]
            return result
    
        from meshmode.mesh.processing import map_mesh
        mesh = map_mesh(mesh, m)
    
    
        discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4)
    
    
        sym_op = (
                sym.forward_metric_derivative_mat(mesh.dim)
                .dot(
                    sym.inverse_metric_derivative_mat(mesh.dim)
                    )
                .reshape(-1))
    
        op = bind(discr, sym_op)
        mat = op(queue).reshape(mesh.dim, mesh.dim)
    
        for i in range(mesh.dim):
            for j in range(mesh.dim):
                tgt = 1 if i == j else 0
    
                err = np.max(np.abs((mat[i, j] - tgt).get(queue=queue)))
                print(i, j, err)
                assert err < 1e-12, (i, j, err)
    
    def test_1d_mass_mat_trig(ctx_factory):
    
        """Check the integral of some trig functions on an interval using the mass
        matrix
        """
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
    
        mesh = generate_regular_rect_mesh(a=(-4*np.pi,), b=(9*np.pi,),
                n=(17,), order=1)
    
    
        discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=8)
    
    
        x = sym.nodes(1)
        f = bind(discr, sym.cos(x[0])**2)(queue)
    
        ones = bind(discr, sym.Ones(sym.DD_VOLUME))(queue)
    
        mass_op = bind(discr, sym.MassOperator()(sym.var("f")))
    
        num_integral_1 = np.dot(ones.get(), mass_op(queue, f=f))
        num_integral_2 = np.dot(f.get(), mass_op(queue, f=ones))
        num_integral_3 = bind(discr, sym.integral(sym.var("f")))(queue, f=f)
    
    
        true_integral = 13*np.pi/2
        err_1 = abs(num_integral_1-true_integral)
        err_2 = abs(num_integral_2-true_integral)
        err_3 = abs(num_integral_3-true_integral)
    
        assert err_1 < 1e-10
        assert err_2 < 1e-10
        assert err_3 < 1e-10
    
    
    @pytest.mark.parametrize("dim", [1, 2, 3])
    
    def test_tri_diff_mat(ctx_factory, dim, order=4):
    
        """Check differentiation matrix along the coordinate axes on a disk
    
        Uses sines as the function to differentiate.
        """
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
    
        from pytools.convergence import EOCRecorder
        axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
    
        for n in [10, 20]:
            mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
                    n=(n,)*dim, order=4)
    
    
            discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4)
    
            nabla = sym.nabla(dim)
    
            for axis in range(dim):
                x = sym.nodes(dim)
    
                f = bind(discr, sym.sin(3*x[axis]))(queue)
                df = bind(discr, 3*sym.cos(3*x[axis]))(queue)
    
    
                sym_op = nabla[axis](sym.var("f"))
    
                bound_op = bind(discr, sym_op)
                df_num = bound_op(queue, f=f)
    
                linf_error = la.norm((df_num-df).get(), np.Inf)
                axis_eoc_recs[axis].add_data_point(1/n, linf_error)
    
        for axis, eoc_rec in enumerate(axis_eoc_recs):
            print(axis)
            print(eoc_rec)
            assert eoc_rec.order_estimate() >= order
    
    
    
    def test_2d_gauss_theorem(ctx_factory):
        """Verify Gauss's theorem explicitly on a mesh"""
    
    
        pytest.importorskip("meshpy")
    
    
        from meshpy.geometry import make_circle, GeometryBuilder
        from meshpy.triangle import MeshInfo, build
    
        geob = GeometryBuilder()
        geob.add_geometry(*make_circle(1))
        mesh_info = MeshInfo()
        geob.set(mesh_info)
    
        mesh_info = build(mesh_info)
    
        from meshmode.mesh.io import from_meshpy
        mesh = from_meshpy(mesh_info, order=1)
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
    
        discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=2)
    
    
        def f(x):
            return sym.join_fields(
                    sym.sin(3*x[0])+sym.cos(3*x[1]),
                    sym.sin(2*x[0])+sym.cos(x[1]))
    
        gauss_err = bind(discr,
                sym.integral((
                    sym.nabla(2) * f(sym.nodes(2))
                    ).sum())
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                -  # noqa: W504
    
                sym.integral(
                    sym.interp("vol", sym.BTAG_ALL)(f(sym.nodes(2)))
                    .dot(sym.normal(sym.BTAG_ALL, 2)),
                    dd=sym.BTAG_ALL)
                )(queue)
    
    
        assert abs(gauss_err) < 1e-13
    
    @pytest.mark.parametrize(("mesh_name", "mesh_pars"), [
        ("disk", [0.1, 0.05]),
        ("rect2", [4, 8]),
        ("rect3", [4, 6]),
        ])
    
    @pytest.mark.parametrize("op_type", ["strong", "weak"])
    
    @pytest.mark.parametrize("flux_type", ["upwind"])
    @pytest.mark.parametrize("order", [3, 4, 5])
    
    # test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)'
    
    def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type,
            order, visualize=False):
    
        """Test whether 2D advection actually converges"""
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        from pytools.convergence import EOCRecorder
        eoc_rec = EOCRecorder()
    
        for mesh_par in mesh_pars:
            if mesh_name == "disk":
                pytest.importorskip("meshpy")
    
                from meshpy.geometry import make_circle, GeometryBuilder
                from meshpy.triangle import MeshInfo, build
    
                geob = GeometryBuilder()
                geob.add_geometry(*make_circle(1))
                mesh_info = MeshInfo()
                geob.set(mesh_info)
    
                mesh_info = build(mesh_info, max_volume=mesh_par)
    
                from meshmode.mesh.io import from_meshpy
                mesh = from_meshpy(mesh_info, order=1)
                h = np.sqrt(mesh_par)
                dim = 2
                dt_factor = 4
    
            elif mesh_name.startswith("rect"):
                dim = int(mesh_name[4:])
                from meshmode.mesh.generation import generate_regular_rect_mesh
                mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
                        n=(mesh_par,)*dim, order=4)
    
                h = 1/mesh_par
                if dim == 2:
                    dt_factor = 4
                elif dim == 3:
                    dt_factor = 2
                else:
                    raise ValueError("dt_factor not known for %dd" % dim)
    
            else:
                raise ValueError("invalid mesh name: " + mesh_name)
    
            v = np.array([0.27, 0.31, 0.1])[:dim]
            norm_v = la.norm(v)
    
            def f(x):
                return sym.sin(10*x)
    
            def u_analytic(x):
                return f(
                        -v.dot(x)/norm_v
                        + sym.var("t", sym.DD_SCALAR)*norm_v)
    
    
            from grudge.models.advection import (
                    StrongAdvectionOperator, WeakAdvectionOperator)
    
            discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
    
            op_class = {
                    "strong": StrongAdvectionOperator,
                    "weak": WeakAdvectionOperator,
                    }[op_type]
            op = op_class(v,
    
                    inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
                    flux_type=flux_type)
    
            bound_op = bind(discr, op.sym_operator())
    
            #print(bound_op)
            #1/0
    
    
            u = bind(discr, u_analytic(sym.nodes(dim)))(queue, t=0)
    
            def rhs(t, u):
                return bound_op(queue, t=t, u=u)
    
            if dim == 3:
                final_time = 0.1
            else:
                final_time = 0.2
    
            dt = dt_factor * h/order**2
            nsteps = (final_time // dt) + 1
            dt = final_time/nsteps + 1e-15
    
            from grudge.shortcuts import set_up_rk4
            dt_stepper = set_up_rk4("u", dt, u, rhs)
    
            last_u = None
    
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(discr, vis_order=order)
    
            step = 0
    
            for event in dt_stepper.run(t_end=final_time):
                if isinstance(event, dt_stepper.StateComputed):
                    step += 1
                    print(event.t)
    
                    last_t = event.t
                    last_u = event.state_component
    
                    if visualize:
    
                        vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step),
    
                                [("u", event.state_component)])
    
            error_l2 = bind(discr,
                sym.norm(2, sym.var("u")-u_analytic(sym.nodes(dim))))(
    
            print(h, error_l2)
            eoc_rec.add_data_point(h, error_l2)
    
        print(eoc_rec.pretty_print(abscissa_label="h",
                error_label="L2 Error"))
    
        assert eoc_rec.order_estimate() > order
    
    
    
    @pytest.mark.parametrize("order", [3, 4, 5])
    
    def test_convergence_maxwell(ctx_factory,  order):
    
        """Test whether 3D maxwells actually converges"""
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        from pytools.convergence import EOCRecorder
        eoc_rec = EOCRecorder()
    
        dims = 3
        ns = [4, 6, 8]
        for n in ns:
            from meshmode.mesh.generation import generate_regular_rect_mesh
            mesh = generate_regular_rect_mesh(
                    a=(0.0,)*dims,
                    b=(1.0,)*dims,
                    n=(n,)*dims)
    
    
            discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
    
    
            epsilon = 1
            mu = 1
    
            from grudge.models.em import get_rectangular_cavity_mode
            sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
    
            analytic_sol = bind(discr, sym_mode)
            fields = analytic_sol(queue, t=0, epsilon=epsilon, mu=mu)
    
            from grudge.models.em import MaxwellOperator
            op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims)
            op.check_bc_coverage(mesh)
            bound_op = bind(discr, op.sym_operator())
    
            def rhs(t, w):
                return bound_op(queue, t=t, w=w)
    
            dt = 0.002
            final_t = dt * 5
            nsteps = int(final_t/dt)
    
            from grudge.shortcuts import set_up_rk4
            dt_stepper = set_up_rk4("w", dt, fields, rhs)
    
            print("dt=%g nsteps=%d" % (dt, nsteps))
    
            norm = bind(discr, sym.norm(2, sym.var("u")))
    
            step = 0
            for event in dt_stepper.run(t_end=final_t):
                if isinstance(event, dt_stepper.StateComputed):
                    assert event.component_id == "w"
                    esc = event.state_component
    
                    step += 1
                    print(step)
    
            sol = analytic_sol(queue, mu=mu, epsilon=epsilon, t=step * dt)
            vals = [norm(queue, u=(esc[i] - sol[i])) / norm(queue, u=sol[i]) for i in range(5)] # noqa E501
            total_error = sum(vals)
            eoc_rec.add_data_point(1.0/n, total_error)
    
        print(eoc_rec.pretty_print(abscissa_label="h",
                error_label="L2 Error"))
    
        assert eoc_rec.order_estimate() > order
    
    
    
    @pytest.mark.parametrize("order", [2, 3, 4])
    def test_improvement_quadrature(ctx_factory, order):
        """Test whether quadrature improves things and converges"""
        from meshmode.mesh.generation import generate_regular_rect_mesh
        from grudge.models.advection import VariableCoefficientAdvectionOperator
        from pytools.convergence import EOCRecorder
        from pytools.obj_array import join_fields
    
        from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
    
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        dims = 2
        sym_nds = sym.nodes(dims)
        advec_v = join_fields(-1*sym_nds[1], sym_nds[0])
    
        flux = "upwind"
    
        op = VariableCoefficientAdvectionOperator(2, advec_v, 0, flux_type=flux)
    
    
        def gaussian_mode():
            source_width = 0.1
            sym_x = sym.nodes(2)
            return sym.exp(-np.dot(sym_x, sym_x) / source_width**2)
    
    
        def conv_test(descr, use_quad):
            print("-"*75)
            print(descr)
            print("-"*75)
    
            eoc_rec = EOCRecorder()
    
            ns = [20, 25]
            for n in ns:
                mesh = generate_regular_rect_mesh(
                    a=(-0.5,)*dims,
                    b=(0.5,)*dims,
                    n=(n,)*dims,
                    order=order)
    
    
                if use_quad:
                    quad_tag_to_group_factory = {
                        "product": QuadratureSimplexGroupFactory(order=4*order)
                        }
                else:
                    quad_tag_to_group_factory = {"product": None}
    
    
                discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order,
    
                        quad_tag_to_group_factory=quad_tag_to_group_factory)
    
                bound_op = bind(discr, op.sym_operator())
    
                fields = bind(discr, gaussian_mode())(queue, t=0)
                norm = bind(discr, sym.norm(2, sym.var("u")))
    
                esc = bound_op(queue, u=fields)
                total_error = norm(queue, u=esc)
                eoc_rec.add_data_point(1.0/n, total_error)
    
            print(eoc_rec.pretty_print(abscissa_label="h", error_label="LInf Error"))
    
            return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history])
    
    
        eoc, errs = conv_test("no quadrature", False)
        q_eoc, q_errs = conv_test("with quadrature", True)
    
        assert q_eoc > eoc
        assert (q_errs < errs).all()
        assert q_eoc > order
    
    
    
    def test_foreign_points(ctx_factory):
        pytest.importorskip("sumpy")
        import sumpy.point_calculus as pc
    
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        dim = 2
        cp = pc.CalculusPatch(np.zeros(dim))
    
        from grudge.discretization import PointsDiscretization
        pdiscr = PointsDiscretization(cl.array.to_device(queue, cp.points))
    
        bind(pdiscr, sym.nodes(dim)**2)(queue)
    
    
    
    Matt Wala's avatar
    Matt Wala committed
    def test_op_collector_order_determinism():
        class TestOperator(sym.Operator):
    
            def __init__(self):
                sym.Operator.__init__(self, sym.DD_VOLUME, sym.DD_VOLUME)
    
            mapper_method = "map_test_operator"
    
        from grudge.symbolic.mappers import BoundOperatorCollector
    
        class TestBoundOperatorCollector(BoundOperatorCollector):
    
            def map_test_operator(self, expr):
                return self.map_operator(expr)
    
        v0 = sym.var("v0")
        ob0 = sym.OperatorBinding(TestOperator(), v0)
    
        v1 = sym.var("v1")
        ob1 = sym.OperatorBinding(TestOperator(), v1)
    
        # The output order isn't significant, but it should always be the same.
        assert list(TestBoundOperatorCollector(TestOperator)(ob0 + ob1)) == [ob0, ob1]
    
    
    
    def test_bessel(ctx_factory):
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        dims = 2
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(
                a=(0.1,)*dims,
                b=(1.0,)*dims,
                n=(8,)*dims)
    
        discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=3)
    
        nodes = sym.nodes(dims)
        r = sym.cse(sym.sqrt(nodes[0]**2 + nodes[1]**2))
    
        # https://dlmf.nist.gov/10.6.1
        n = 3
        bessel_zero = (
                sym.bessel_j(n+1, r)
                + sym.bessel_j(n-1, r)
                - 2*n/r * sym.bessel_j(n, r))
    
        z = bind(discr, sym.norm(2, bessel_zero))(queue)
    
        assert z < 1e-15
    
    
    
    def test_external_call(ctx_factory):
        cl_ctx = ctx_factory()
        queue = cl.CommandQueue(cl_ctx)
    
        def double(queue, x):
            return 2 * x
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
    
        dims = 2
    
        mesh = generate_regular_rect_mesh(a=(0,) * dims, b=(1,) * dims, n=(4,) * dims)
        discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=1)
    
        ones = sym.Ones(sym.DD_VOLUME)
        from pymbolic.primitives import Variable
        op = (
                ones * 3
                + Variable("double")(ones))
    
        from grudge.function_registry import (
                base_function_registry, register_external_function)
    
        freg = register_external_function(
                base_function_registry,
                "double",
                implementation=double,
                dd=sym.DD_VOLUME)
    
        bound_op = bind(discr, op, function_registry=freg)
    
        result = bound_op(queue, double=double)
        assert (result == 5).get().all()
    
    
    
    # You can test individual routines by typing
    
    # $ python test_grudge.py 'test_routine()'
    
    
    if __name__ == "__main__":
        import sys
        if len(sys.argv) > 1:
            exec(sys.argv[1])
        else:
    
            from pytest import main
    
            main([__file__])
    
    # vim: fdm=marker