Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pyopencl as cl
import pyopencl.array
import pyopencl.clmath
from pytools.obj_array import join_fields, make_obj_array
from grudge import sym, bind, DGDiscretizationWithBoundaries
pytest_generate_tests_for_pyopencl
as pytest_generate_tests)
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
@pytest.mark.parametrize("dim", [2, 3])
def test_inverse_metric(ctx_factory, dim):
queue = cl.CommandQueue(cl_ctx)
from meshmode.mesh.generation import generate_regular_rect_mesh
Andreas Klöckner
committed
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(6,)*dim, order=4)
def m(x):
result = np.empty_like(x)
result[0] = (
1.5*x[0] + np.cos(x[0])
+ 0.1*np.sin(10*x[1]))
result[1] = (
0.05*np.cos(10*x[0])
+ 1.3*x[1] + np.sin(x[1]))
if len(x) == 3:
result[2] = x[2]
return result
from meshmode.mesh.processing import map_mesh
mesh = map_mesh(mesh, m)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4)
sym_op = (
sym.forward_metric_derivative_mat(mesh.dim)
.dot(
sym.inverse_metric_derivative_mat(mesh.dim)
)
.reshape(-1))
op = bind(discr, sym_op)
mat = op(queue).reshape(mesh.dim, mesh.dim)
for i in range(mesh.dim):
for j in range(mesh.dim):
tgt = 1 if i == j else 0
err = np.max(np.abs((mat[i, j] - tgt).get(queue=queue)))
logger.info("error[%d, %d]: %.5e", i, j, err)
assert err < 1.0e-12, (i, j, err)
# }}}
# {{{ mass operator trig integration
@pytest.mark.parametrize("ambient_dim", [1, 2, 3])
@pytest.mark.parametrize("quad_tag", [sym.QTAG_NONE, "OVSMP"])
def test_mass_mat_trig(ctx_factory, ambient_dim, quad_tag):
"""Check the integral of some trig functions on an interval using the mass
queue = cl.CommandQueue(cl_ctx)
nelements = 17
order = 4
a = -4.0 * np.pi
b = +9.0 * np.pi
true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
dd_quad = sym.DOFDesc(sym.DTAG_VOLUME_ALL, quad_tag)
if quad_tag is sym.QTAG_NONE:
quad_tag_to_group_factory = {}
else:
quad_tag_to_group_factory = {
quad_tag: QuadratureSimplexGroupFactory(order=2*order)
}
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(a,)*ambient_dim, b=(b,)*ambient_dim,
n=(nelements,)*ambient_dim, order=1)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
def _get_variables_on(dd):
sym_f = sym.var("f", dd=dd)
sym_x = sym.nodes(ambient_dim, dd=dd)
sym_ones = sym.Ones(dd)
return sym_f, sym_x, sym_ones
sym_f, sym_x, sym_ones = _get_variables_on(sym.DD_VOLUME)
f_volm = bind(discr, sym.cos(sym_x[0])**2)(queue).get()
ones_volm = bind(discr, sym_ones)(queue).get()
sym_f, sym_x, sym_ones = _get_variables_on(dd_quad)
f_quad = bind(discr, sym.cos(sym_x[0])**2)(queue)
ones_quad = bind(discr, sym_ones)(queue)
mass_op = bind(discr, sym.MassOperator(dd_quad, sym.DD_VOLUME)(sym_f))
num_integral_1 = np.dot(ones_volm, mass_op(queue, f=f_quad).get())
err_1 = abs(num_integral_1 - true_integral)
assert err_1 < 5.0e-10, err_1
num_integral_2 = np.dot(f_volm, mass_op(queue, f=ones_quad).get())
err_2 = abs(num_integral_2 - true_integral)
assert err_2 < 5.0e-10, err_2
if quad_tag is sym.QTAG_NONE:
# NOTE: `integral` always makes a square mass matrix and
# `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
num_integral_3 = bind(discr,
sym.integral(sym_f, dd=dd_quad))(queue, f=f_quad)
err_3 = abs(num_integral_3 - true_integral)
assert err_3 < 5.0e-10, err_3
# }}}
# {{{ mass operator surface area
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
def _ellipse_surface_area(radius, aspect_ratio):
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
eccentricity = 1.0 - (1/aspect_ratio)**2
if abs(aspect_ratio - 2.0) < 1.0e-14:
# NOTE: hardcoded value so we don't need scipy for the test
ellip_e = 1.2110560275684594
else:
from scipy.special import ellipe
ellip_e = ellipe(eccentricity)
return 4.0 * radius * ellip_e
def _spheroid_surface_area(radius, aspect_ratio):
# https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
a = 1.0
c = aspect_ratio
if a < c:
e = np.sqrt(1.0 - (a/c)**2)
return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
else:
e = np.sqrt(1.0 - (c/a)**2)
return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))
@pytest.mark.parametrize("name", [
"2-1-ellipse", "spheroid", "box2d", "box3d"
])
def test_mass_surface_area(ctx_factory, name):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio)
elif name == "box2d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=2)
surface_area = 1.0
elif name == "box3d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=3)
surface_area = 1.0
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
x = discr.discr_from_dd("vol").nodes().get(queue)
logger.info("nnodes: %d", volume_discr.nnodes)
logger.info("nelements: %d", volume_discr.mesh.nelements)
logger.info("bbox: %s",
[(np.min(x[n]), np.max(x[n])) for n in range(x.shape[0])])
# {{{ compute surface area
dd = sym.DD_VOLUME
sym_op = sym.NodalSum(dd)(sym.MassOperator(dd, dd)(sym.Ones(dd)))
approx_surface_area = bind(discr, sym_op)(queue)
logger.info("surface: got {:.5e} / expected {:.5e}".format(
approx_surface_area, surface_area))
area_error = abs(approx_surface_area - surface_area) / abs(surface_area)
# }}}
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(queue)
eoc.add_data_point(h_max, area_error)
# }}}
logger.info("surface area error\n%s", str(eoc))
assert eoc.max_error() < 1.0e-14 \
# }}}
# {{{ surface mass inverse
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
@pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"])
def test_surface_mass_operator_inverse(ctx_factory, name):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
x = discr.discr_from_dd("vol").nodes().get(queue)
logger.info("nnodes: %d", volume_discr.nnodes)
logger.info("nelements: %d", volume_discr.mesh.nelements)
logger.info("bbox: %s",
[(np.min(x[n]), np.max(x[n])) for n in range(x.shape[0])])
# {{{ compute inverse mass
dd = sym.DD_VOLUME
sym_f = sym.cos(4.0 * sym.nodes(mesh.ambient_dim, dd)[0])
sym_op = sym.InverseMassOperator(dd, dd)(
sym.MassOperator(dd, dd)(sym.var("f")))
f = bind(discr, sym_f)(queue)
f_inv = bind(discr, sym_op)(queue, f=f)
logger.info("inverse: got {:.5e} / expected {:.5e}".format(
cl.array.max(f - f_inv).get(queue), 1.0))
inv_error = la.norm(f.get(queue) - f_inv.get(queue)) \
/ la.norm(f.get(queue))
# }}}
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(queue)
eoc.add_data_point(h_max, inv_error)
# }}}
logger.info("inverse mass error\n%s", str(eoc))
assert eoc.max_error() < 5.0e-09 \
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# }}}
# {{{ surface face normal orthogonality
def _avg_face_normal(dd, ambient_dim, dim=None):
dd = sym.as_dofdesc(dd)
assert dd.is_trace()
if dim is None:
dim = ambient_dim - 1
face_normal_i = sym.normal(dd, ambient_dim, dim=dim)
face_normal_e = sym.OppositeInteriorFaceSwap()(face_normal_i)
face_normal = (face_normal_i - face_normal_e) / 2.0
return sym.cse(
face_normal / sym.sqrt(face_normal.dot(face_normal)),
"avg_face_normal",
sym.cse_scope.DISCRETIZATION)
@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_face_normal_surface(ctx_factory, mesh_name):
"""Check that face normals are orthogonal to the surface normal"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
# {{{ geometry
if mesh_name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif mesh_name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown mesh name: %s" % mesh_name)
mesh = builder.get_mesh(builder.resolutions[1], builder.mesh_order)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=builder.order)
# }}}
# {{{ symbolic
dv = sym.DD_VOLUME
df = sym.as_dofdesc(sym.FACE_RESTR_INTERIOR)
ambient_dim = mesh.ambient_dim
surf_dim = mesh.dim
face_dim = surf_dim - 1
sym_surf_normal = sym.interp(dv, df)(
sym.surface_normal(ambient_dim, dim=surf_dim, dd=dv).as_vector()
)
sym_surf_normal = sym_surf_normal / sym.sqrt(sum(sym_surf_normal**2))
sym_face_normal_i = sym.normal(df, ambient_dim, dim=face_dim)
sym_face_normal_e = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_i)
sym_face_normal_avg = _avg_face_normal(df, ambient_dim, dim=face_dim)
sym_face_normal_op = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_avg)
if mesh.ambient_dim == 3:
# NOTE: there's only one face tangent in 3d
sym_face_tangent = (sym.pseudoscalar(ambient_dim, face_dim, dd=df)
/ sym.area_element(ambient_dim, face_dim, dd=df)).as_vector()
# }}}
# {{{ checks
rtol = 1.0e-14
surf_normal = bind(discr, sym_surf_normal)(queue)
face_normal_i = bind(discr, sym_face_normal_i)(queue)
face_normal_e = bind(discr, sym_face_normal_e)(queue)
face_normal_avg = bind(discr, sym_face_normal_avg)(queue)
face_normal_op = bind(discr, sym_face_normal_op)(queue)
# check interpolated surface normal is orthogonal to face normal
error = la.norm(surf_normal.dot(face_normal_i).get(queue), np.inf)
logger.info("error[n_dot_i]: %.5e", error)
assert error < rtol
# check angle between two neighboring elements
error = la.norm(face_normal_i.dot(face_normal_e).get(queue) + 1.0, np.inf)
logger.info("error[i_dot_e]: %.5e", error)
assert error > rtol
# check uniqueness of normal on the two sides
error = la.norm(sum(face_normal_avg + face_normal_op).get(queue), np.inf)
logger.info("error[a_plus_o]: %.5e", error)
assert error < rtol
# check orthogonality with face tangent
if ambient_dim == 3:
face_tangent = bind(discr, sym_face_tangent)(queue)
error = la.norm(face_tangent.dot(face_normal_avg).get(queue), np.inf)
logger.info("error[t_dot_avg]: %.5e", error)
assert error < 5 * rtol
# }}}
# }}}
# {{{ diff operator
@pytest.mark.parametrize("dim", [1, 2, 3])
def test_tri_diff_mat(ctx_factory, dim, order=4):
"""Check differentiation matrix along the coordinate axes on a disk
Uses sines as the function to differentiate.
"""
queue = cl.CommandQueue(cl_ctx)
from meshmode.mesh.generation import generate_regular_rect_mesh
from pytools.convergence import EOCRecorder
axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(n,)*dim, order=4)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4)
nabla = sym.nabla(dim)
for axis in range(dim):
x = sym.nodes(dim)
f = bind(discr, sym.sin(3*x[axis]))(queue)
df = bind(discr, 3*sym.cos(3*x[axis]))(queue)
sym_op = nabla[axis](sym.var("f"))
bound_op = bind(discr, sym_op)
df_num = bound_op(queue, f=f)
linf_error = la.norm((df_num-df).get(), np.Inf)
axis_eoc_recs[axis].add_data_point(1/n, linf_error)
for axis, eoc_rec in enumerate(axis_eoc_recs):
logger.info("axis %d\n%s", axis, eoc_rec)
# }}}
# {{{ divergence theorem
def test_2d_gauss_theorem(ctx_factory):
"""Verify Gauss's theorem explicitly on a mesh"""
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=2)
sym.sin(3*x[0])+sym.cos(3*x[1]),
sym.sin(2*x[0])+sym.cos(x[1]))
gauss_err = bind(discr,
sym.integral((
sym.nabla(2) * f(sym.nodes(2))
).sum())
sym.integral(
sym.interp("vol", sym.BTAG_ALL)(f(sym.nodes(2)))
.dot(sym.normal(sym.BTAG_ALL, 2)),
dd=sym.BTAG_ALL)
)(queue)
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_surface_divergence_theorem(ctx_factory, mesh_name, visualize=False):
r"""Check the surface divergence theorem.
.. math::
\int_Sigma \phi \nabla_i f_i =
\int_\Sigma \nabla_i \phi f_i +
\int_\Sigma \kappa \phi f_i n_i +
\int_{\partial \Sigma} \phi f_i m_i
where :math:`n_i` is the surface normal and :class:`m_i` is the
face normal (which should be orthogonal to both the surface normal
and the face tangent).
"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
# {{{ cases
if mesh_name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif mesh_name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
elif mesh_name == "circle":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
elif mesh_name == "starfish":
from mesh_data import StarfishMeshBuilder
builder = StarfishMeshBuilder()
elif mesh_name == "sphere":
from mesh_data import SphereMeshBuilder
builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
else:
raise ValueError("unknown mesh name: %s" % mesh_name)
# }}}
# {{{ convergene
def f(x):
return join_fields(
sym.sin(3*x[1]) + sym.cos(3*x[0]) + 1.0,
sym.sin(2*x[0]) + sym.cos(x[1]),
3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]),
)[:ambient_dim]
from pytools.convergence import EOCRecorder
eoc_global = EOCRecorder()
eoc_local = EOCRecorder()
theta = np.pi / 3.33
ambient_dim = builder.ambient_dim
if ambient_dim == 2:
mesh_rotation = np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)],
])
else:
mesh_rotation = np.array([
[1.0, 0.0, 0.0],
[0.0, np.cos(theta), -np.sin(theta)],
[0.0, np.sin(theta), np.cos(theta)],
])
mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]
for i, resolution in enumerate(builder.resolutions):
from meshmode.mesh.processing import affine_map
mesh = builder.get_mesh(resolution, builder.mesh_order)
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
from meshmode.discretization.poly_element import \
QuadratureSimplexGroupFactory
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=builder.order,
quad_tag_to_group_factory={
"product": QuadratureSimplexGroupFactory(2 * builder.order)
})
volume = discr.discr_from_dd(sym.DD_VOLUME)
assert len(volume.groups) == 1
logger.info("nnodes: %d", volume.nnodes)
logger.info("nelements: %d", volume.mesh.nelements)
dd = sym.DD_VOLUME
dq = dd.with_qtag("product")
df = sym.as_dofdesc(sym.FACE_RESTR_ALL)
ambient_dim = discr.ambient_dim
dim = discr.dim
# variables
sym_f = f(sym.nodes(ambient_dim, dd=dd))
sym_f_quad = f(sym.nodes(ambient_dim, dd=dq))
sym_kappa = sym.summed_curvature(ambient_dim, dim=dim, dd=dq)
sym_normal = sym.surface_normal(ambient_dim, dim=dim, dd=dq).as_vector()
sym_face_normal = sym.normal(df, ambient_dim, dim=dim - 1)
sym_face_f = sym.interp(dd, df)(sym_f)
# operators
sym_stiff = sum(
sym.StiffnessOperator(d)(f) for d, f in enumerate(sym_f)
)
sym_stiff_t = sum(
sym.StiffnessTOperator(d)(f) for d, f in enumerate(sym_f)
)
sym_k = sym.MassOperator(dq, dd)(sym_kappa * sym_f_quad.dot(sym_normal))
sym_flux = sym.FaceMassOperator()(sym_face_f.dot(sym_face_normal))
# sum everything up and check the result
sym_op_global = sym.NodalSum(dd)(
sym_stiff - (sym_stiff_t + sym_k))
sym_op_local = sym.ElementwiseSumOperator(dd)(
sym_stiff - (sym_stiff_t + sym_k + sym_flux))
op_global = bind(discr, sym_op_global)(queue)
op_local = bind(discr, sym_op_local)(queue).get(queue)
err_global = la.norm(op_global)
err_local = la.norm(
la.norm(volume.groups[0].view(op_local), np.inf, axis=1),
np.inf)
logger.info("errors: global %.5e local %.5e", err_global, err_local)
# compute max element size
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(queue)
eoc_global.add_data_point(h_max, err_global)
eoc_local.add_data_point(h_max, err_local)
if visualize:
r = cl.array.to_device(queue, op_local)
r = cl.clmath.log10(cl.clmath.fabs(r) + 1.0e-16)
from meshmode.discretization.visualization import make_visualizer
vis = make_visualizer(queue, discr, vis_order=builder.order)
filename = "test_surface_divergence_theorem_error_{:04d}".format(i)
vis.write_vtk_file(filename, [
("r", r)
], overwrite=True, legend=False)
# }}}
order = min(builder.order, builder.mesh_order) - 0.5
logger.info("\n%s", str(eoc_global))
logger.info("\n%s", str(eoc_local))
assert eoc_global.max_error() < 1.0e-12 \
or eoc_global.order_estimate() > order - 0.5
assert eoc_local.max_error() < 1.0e-12 \
or eoc_local.order_estimate() > order - 0.5
# }}}
# {{{ models: advection
@pytest.mark.parametrize(("mesh_name", "mesh_pars"), [
("disk", [0.1, 0.05]),
("rect2", [4, 8]),
("rect3", [4, 6]),
])
@pytest.mark.parametrize("op_type", ["strong", "weak"])
@pytest.mark.parametrize("flux_type", ["central"])
@pytest.mark.parametrize("order", [3, 4, 5])
Andreas Klöckner
committed
# test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)'
def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type,
order, visualize=False):
"""Test whether 2D advection actually converges"""
queue = cl.CommandQueue(cl_ctx)
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
for mesh_par in mesh_pars:
if mesh_name == "segment":
from meshmode.mesh.generation import generate_box_mesh
mesh = generate_box_mesh(
[np.linspace(-1.0, 1.0, mesh_par)],
order=order)
dim = 1
dt_factor = 1.0
elif mesh_name == "disk":
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
pytest.importorskip("meshpy")
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info, max_volume=mesh_par)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
dim = 2
dt_factor = 4
elif mesh_name.startswith("rect"):
dim = int(mesh_name[4:])
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(mesh_par,)*dim, order=4)
if dim == 2:
dt_factor = 4
elif dim == 3:
dt_factor = 2
else:
raise ValueError("dt_factor not known for %dd" % dim)
else:
raise ValueError("invalid mesh name: " + mesh_name)
v = np.array([0.27, 0.31, 0.1])[:dim]
norm_v = la.norm(v)
def f(x):
return sym.sin(10*x)
def u_analytic(x):
return f(
-v.dot(x)/norm_v
+ sym.var("t", sym.DD_SCALAR)*norm_v)
from grudge.models.advection import (
StrongAdvectionOperator, WeakAdvectionOperator)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
op_class = {
"strong": StrongAdvectionOperator,
"weak": WeakAdvectionOperator,
}[op_type]
op = op_class(v,
inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
flux_type=flux_type)
bound_op = bind(discr, op.sym_operator())
u = bind(discr, u_analytic(sym.nodes(dim)))(queue, t=0)
def rhs(t, u):
return bound_op(queue, t=t, u=u)
if dim == 3:
final_time = 0.1
else:
final_time = 0.2
h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim))(queue)
dt = dt_factor * h_max/order**2
nsteps = (final_time // dt) + 1
dt = final_time/nsteps + 1e-15
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("u", dt, u, rhs)
last_u = None
from grudge.shortcuts import make_visualizer
vis = make_visualizer(discr, vis_order=order)
step = 0
for event in dt_stepper.run(t_end=final_time):
if isinstance(event, dt_stepper.StateComputed):
step += 1
logger.debug("[%04d] t = %.5f", step, event.t)
last_t = event.t
last_u = event.state_component
if visualize:
vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step),
[("u", event.state_component)])
error_l2 = bind(discr,
sym.norm(2, sym.var("u")-u_analytic(sym.nodes(dim))))(
Andreas Klöckner
committed
queue, t=last_t, u=last_u)
logger.info("h_max %.5e error %.5e", h_max, error_l2)
eoc_rec.add_data_point(h_max, error_l2)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
# }}}
# {{{ models: maxwell
@pytest.mark.parametrize("order", [3, 4, 5])
def test_convergence_maxwell(ctx_factory, order):
"""Test whether 3D Maxwell's actually converges"""
queue = cl.CommandQueue(cl_ctx)
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
dims = 3
ns = [4, 6, 8]
for n in ns:
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(0.0,)*dims,
b=(1.0,)*dims,
n=(n,)*dims)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
epsilon = 1
mu = 1
from grudge.models.em import get_rectangular_cavity_mode
sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
analytic_sol = bind(discr, sym_mode)
fields = analytic_sol(queue, t=0, epsilon=epsilon, mu=mu)
from grudge.models.em import MaxwellOperator
op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims)
op.check_bc_coverage(mesh)
bound_op = bind(discr, op.sym_operator())
def rhs(t, w):
return bound_op(queue, t=t, w=w)
dt = 0.002
final_t = dt * 5
nsteps = int(final_t/dt)
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("w", dt, fields, rhs)
logger.info("dt %.5e nsteps %5d", dt, nsteps)
norm = bind(discr, sym.norm(2, sym.var("u")))
step = 0
for event in dt_stepper.run(t_end=final_t):
if isinstance(event, dt_stepper.StateComputed):
assert event.component_id == "w"
esc = event.state_component
step += 1
logger.debug("[%04d] t = %.5e", step, event.t)
sol = analytic_sol(queue, mu=mu, epsilon=epsilon, t=step * dt)
vals = [norm(queue, u=(esc[i] - sol[i])) / norm(queue, u=sol[i]) for i in range(5)] # noqa E501
total_error = sum(vals)
eoc_rec.add_data_point(1.0/n, total_error)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
# }}}
# {{{ models: variable coefficient advection oversampling
@pytest.mark.parametrize("order", [2, 3, 4])
def test_improvement_quadrature(ctx_factory, order):
"""Test whether quadrature improves things and converges"""
from meshmode.mesh.generation import generate_regular_rect_mesh
from grudge.models.advection import VariableCoefficientAdvectionOperator
from pytools.convergence import EOCRecorder
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
queue = cl.CommandQueue(cl_ctx)
dims = 2
sym_nds = sym.nodes(dims)
advec_v = join_fields(-1*sym_nds[1], sym_nds[0])
flux = "upwind"
op = VariableCoefficientAdvectionOperator(advec_v, 0, flux_type=flux)
def gaussian_mode():
source_width = 0.1
sym_x = sym.nodes(2)
return sym.exp(-np.dot(sym_x, sym_x) / source_width**2)
logger.info("-" * 75)
logger.info(descr)
logger.info("-" * 75)
eoc_rec = EOCRecorder()
ns = [20, 25]
for n in ns:
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dims,
b=(0.5,)*dims,
n=(n,)*dims,
order=order)
if use_quad:
quad_tag_to_group_factory = {
"product": QuadratureSimplexGroupFactory(order=4*order)
}
else:
quad_tag_to_group_factory = {"product": None}
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
bound_op = bind(discr, op.sym_operator())
fields = bind(discr, gaussian_mode())(queue, t=0)
norm = bind(discr, sym.norm(2, sym.var("u")))
esc = bound_op(queue, u=fields)
total_error = norm(queue, u=esc)
eoc_rec.add_data_point(1.0/n, total_error)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history])
eoc, errs = conv_test("no quadrature", False)
q_eoc, q_errs = conv_test("with quadrature", True)
assert q_eoc > eoc
assert (q_errs < errs).all()
assert q_eoc > order
# }}}
# {{{ foreign points
def test_foreign_points(ctx_factory):
pytest.importorskip("sumpy")
import sumpy.point_calculus as pc
queue = cl.CommandQueue(cl_ctx)
dim = 2
cp = pc.CalculusPatch(np.zeros(dim))
from grudge.discretization import PointsDiscretization
pdiscr = PointsDiscretization(cl.array.to_device(queue, cp.points))
bind(pdiscr, sym.nodes(dim)**2)(queue)
# }}}
# {{{ operator collector determinism
def test_op_collector_order_determinism():
class TestOperator(sym.Operator):