Newer
Older
from __future__ import absolute_import
from __future__ import print_function
import six
from six.moves import range
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.tools import make_normal_particle_array
logger = logging.getLogger(__name__)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("nparticles", [9, 4096, 10**5])
def test_bounding_box(ctx_getter, dtype, dims, nparticles):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree.tools import AXIS_NAMES
from boxtree.bounding_box import BoundingBoxFinder
bbf = BoundingBoxFinder(ctx)
axis_names = AXIS_NAMES[:dims]
logger.info("%s - %s %s" % (dtype, dims, nparticles))
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
bbox_min = [np.min(x.get()) for x in particles]
bbox_max = [np.max(x.get()) for x in particles]
bbox_cl, evt = bbf(particles, radii=None)
bbox_cl = bbox_cl.get()
bbox_min_cl = np.empty(dims, dtype)
bbox_max_cl = np.empty(dims, dtype)
for i, ax in enumerate(axis_names):
bbox_min_cl[i] = bbox_cl["min_"+ax]
bbox_max_cl[i] = bbox_cl["max_"+ax]
assert (bbox_min == bbox_min_cl).all()
assert (bbox_max == bbox_max_cl).all()
# {{{ test basic (no source/target distinction) tree build
def run_build_test(builder, queue, dims, dtype, nparticles, do_plot,
max_particles_in_box=None, max_leaf_refine_weight=None,
refine_weights=None, **kwargs):
if dtype == np.float32:
tol = 1e-4
elif dtype == np.float64:
tol = 1e-12
else:
raise RuntimeError("unsupported dtype: %s" % dtype)
if (dtype == np.float32
and dims == 2
and queue.device.platform.name == "Portable Computing Language"):
pytest.xfail("2D float doesn't work on POCL")
if max_particles_in_box is not None:
logger.info("%dD %s - %d particles - max %d per box - %s" % (
dims, dtype.type.__name__, nparticles, max_particles_in_box,
" - ".join("%s: %s" % (k, v) for k, v in six.iteritems(kwargs))))
else:
logger.info("%dD %s - %d particles - max leaf weight %d - %s" % (
dims, dtype.type.__name__, nparticles, max_leaf_refine_weight,
" - ".join("%s: %s" % (k, v) for k, v in six.iteritems(kwargs))))
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
tree, _ = builder(queue, particles,
max_particles_in_box=max_particles_in_box,
refine_weights=refine_weights,
max_leaf_refine_weight=max_leaf_refine_weight,
debug=True, **kwargs)
tree = tree.get(queue=queue)
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.user_source_ids]).all()
if refine_weights is not None:
refine_weights_reordered = refine_weights.get()[tree.user_source_ids]
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
from boxtree import box_flags_enum as bfe
scaled_tol = tol*tree.root_extent
# Empty boxes exist in non-pruned trees--which themselves are undocumented.
# These boxes will fail these tests.
if not (tree.box_flags[ibox] & bfe.HAS_OWN_SRCNTGTS):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), (
ibox, extent_low, tree.bounding_box[0])
assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), (
ibox, extent_high, tree.bounding_box[1])
start = tree.box_source_starts[ibox]
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
box_particles = sorted_particles[:,
start:start+tree.box_source_counts_cumul[ibox]]
(box_particles < extent_high[:, np.newaxis] + scaled_tol)
(extent_low[:, np.newaxis] - scaled_tol <= box_particles)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
plotter.draw_box(ibox, edgecolor="red")
if not (tree.box_flags[ibox] & bfe.HAS_CHILDREN):
# Check that leaf particle density is as promised.
nparticles_in_box = tree.box_source_counts_cumul[ibox]
if max_particles_in_box is not None:
if nparticles_in_box > max_particles_in_box:
print("too many particles ({0} > {1}); box {2}".format(
nparticles_in_box, max_particles_in_box, ibox))
all_good_here = False
else:
assert refine_weights is not None
box_weight = np.sum(
refine_weights_reordered[start:start+nparticles_in_box])
if box_weight > max_leaf_refine_weight:
print("refine weight exceeded ({0} > {1}); box {2}".format(
box_weight, max_leaf_refine_weight, ibox))
all_good_here = False
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
def particle_tree_test_decorator(f):
f = pytest.mark.opencl(f)
f = pytest.mark.parametrize("dtype", [np.float64, np.float32])(f)
f = pytest.mark.parametrize("dims", [2, 3])(f)
return f
@particle_tree_test_decorator
def test_single_box_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims,
dtype, 4, max_particles_in_box=30, do_plot=do_plot)
@particle_tree_test_decorator
def test_two_level_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims,
dtype, 50, max_particles_in_box=30, do_plot=do_plot)
@particle_tree_test_decorator
def test_unpruned_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
# test unpruned tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot, max_particles_in_box=30, skip_prune=True)
@particle_tree_test_decorator
def test_particle_tree_with_reallocations(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
max_particles_in_box=30, do_plot=do_plot, nboxes_guess=5)
@particle_tree_test_decorator
def test_particle_tree_with_many_empty_leaves(
ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
max_particles_in_box=5, do_plot=do_plot)
@particle_tree_test_decorator
def test_vanilla_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
max_particles_in_box=30, do_plot=do_plot)
@particle_tree_test_decorator
def test_explicit_refine_weights_particle_tree(ctx_getter, dtype, dims,
do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
nparticles = 10**5
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(ctx, seed=10)
refine_weights = rng.uniform(queue, nparticles, dtype=np.int32, a=1, b=10)
run_build_test(builder, queue, dims, dtype, nparticles,
refine_weights=refine_weights, max_leaf_refine_weight=100,
do_plot=do_plot)
Andreas Klöckner
committed
@particle_tree_test_decorator
def test_non_adaptive_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**4,
max_particles_in_box=30, do_plot=do_plot, kind="non-adaptive")
# }}}
# {{{ source/target tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_source_target_tree(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
Andreas Klöckner
committed
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
Andreas Klöckner
committed
if do_plot:
import matplotlib.pyplot as pt
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
Andreas Klöckner
committed
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
Andreas Klöckner
committed
queue.finish()
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True)
tree = tree.get(queue=queue)
Andreas Klöckner
committed
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
Andreas Klöckner
committed
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
Andreas Klöckner
committed
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
Andreas Klöckner
committed
all_good_so_far = True
Andreas Klöckner
committed
if do_plot:
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
Andreas Klöckner
committed
tol = 1e-15
extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner
committed
assert (extent_low >=
tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <=
tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
Andreas Klöckner
committed
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
Andreas Klöckner
committed
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
for what, particles in [
src_start:src_start+tree.box_source_counts_cumul[ibox]]),
tgt_start:tgt_start+tree.box_target_counts_cumul[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis] + tol)
(extent_low[:, np.newaxis] - tol <= particles)
).all(axis=0)
Andreas Klöckner
committed
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
Andreas Klöckner
committed
plotter.draw_box(ibox, edgecolor="red")
pt.show()
Andreas Klöckner
committed
if not all_good_here:
Andreas Klöckner
committed
all_good_so_far = all_good_so_far and all_good_here
assert all_good_so_far
Andreas Klöckner
committed
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
Andreas Klöckner
committed
Andreas Klöckner
committed
# {{{ test sources/targets-with-extent tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_extent_tree(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 100000
ntargets = 200000
dtype = np.float64
npoint_sources_per_source = 16
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=13)
source_radii = 2**rng.uniform(queue, nsources, dtype=dtype,
a=-10, b=0)
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype,
a=-10, b=0)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
dev_tree, _ = tb(queue, sources, targets=targets,
source_radii=source_radii, target_radii=target_radii,
max_particles_in_box=10, debug=True)
logger.info("transfer tree, check orderings")
tree = dev_tree.get(queue=queue)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
sorted_source_radii = tree.source_radii
sorted_target_radii = tree.target_radii
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
unsorted_source_radii = source_radii.get()
unsorted_target_radii = target_radii.get()
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
assert (sorted_source_radii
== unsorted_source_radii[tree.user_source_ids]).all()
# {{{ test box structure, stick-out criterion
logger.info("test box structure, stick-out criterion")
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
if ntargets:
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
assert (sorted_target_radii
== unsorted_target_radii[user_target_ids]).all()
all_good_so_far = True
# {{{ check sources, targets
extent_low, extent_high = tree.get_box_extent(ibox)
box_radius = np.max(extent_high-extent_low) * 0.5
stick_out_dist = tree.stick_out_factor * box_radius
assert (extent_low >=
tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <=
tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
for what, starts, counts, points, radii in [
("source", tree.box_source_starts, tree.box_source_counts_cumul,
sorted_sources, sorted_source_radii),
("target", tree.box_target_starts, tree.box_target_counts_cumul,
sorted_targets, sorted_target_radii),
]:
bstart = starts[ibox]
bslice = slice(bstart, bstart+counts[ibox])
check_particles = points[:, bslice]
check_radii = radii[bslice]
good = (
(check_particles + check_radii
< extent_high[:, np.newaxis] + stick_out_dist)
&
(extent_low[:, np.newaxis] - stick_out_dist
<= check_particles - check_radii)
).all(axis=0)
all_good_here = good.all()
if not all_good_here:
print("BAD BOX %s %d level %d" % (what, ibox, tree.box_levels[ibox]))
all_good_so_far = all_good_so_far and all_good_here
assert all_good_here
# }}}
assert all_good_so_far
# }}}
# {{{ create, link point sources
logger.info("creating point sources")
np.random.seed(20)
from pytools.obj_array import make_obj_array
point_sources = make_obj_array([
cl.array.to_device(queue,
unsorted_sources[i][:, np.newaxis]
+ unsorted_source_radii[:, np.newaxis]
* np.random.uniform(
)
for i in range(dims)])
point_source_starts = cl.array.arange(queue,
0, (nsources+1)*npoint_sources_per_source, npoint_sources_per_source,
dtype=tree.particle_id_dtype)
from boxtree.tree import link_point_sources
dev_tree = link_point_sources(queue, dev_tree,
point_source_starts, point_sources,
debug=True)
# }}}
# }}}
# {{{ leaves to balls query test
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_leaves_to_balls_query(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.area_query import LeavesToBallsLookupBuilder
lblb = LeavesToBallsLookupBuilder(ctx)
lbl, _ = lblb(queue, tree, ball_centers, ball_radii)
tree = tree.get(queue=queue)
lbl = lbl.get(queue=queue)
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# {{{ area query test
def run_area_query_test(ctx, queue, tree, ball_centers, ball_radii):
"""
Performs an area query and checks that the result is as expected.
"""
from boxtree.area_query import AreaQueryBuilder
aqb = AreaQueryBuilder(ctx)
area_query, _ = aqb(queue, tree, ball_centers, ball_radii)
# Get data to host for test.
tree = tree.get(queue=queue)
area_query = area_query.get(queue=queue)
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
leaf_boxes, = (tree.box_flags & box_flags_enum.HAS_CHILDREN == 0).nonzero()
leaf_box_radii = np.empty(len(leaf_boxes))
leaf_box_centers = np.empty((len(leaf_boxes), dims))
for idx, leaf_box in enumerate(leaf_boxes):
box_center = tree.box_centers[:, leaf_box]
ext_l, ext_h = tree.get_box_extent(leaf_box)
leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
leaf_box_centers[idx] = box_center
for ball_nr, (ball_center, ball_radius) \
in enumerate(zip(ball_centers, ball_radii)):
linf_box_dists = np.max(np.abs(ball_center - leaf_box_centers), axis=-1)
near_leaves_indices, \
= np.where(linf_box_dists < ball_radius + leaf_box_radii)
near_leaves = leaf_boxes[near_leaves_indices]
start, end = area_query.leaves_near_ball_starts[ball_nr:ball_nr+2]
found = area_query.leaves_near_ball_lists[start:end]
actual = near_leaves
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
assert set(found) == set(actual), (found, actual)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query(ctx_getter, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
run_area_query_test(ctx, queue, tree, ball_centers, ball_radii)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_balls_outside_bbox(ctx_getter, dims, do_plot=False):
"""
The input to the area query includes balls whose centers are not within
the tree bounding box.
"""
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**4
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(ctx, seed=13)
bbox_min = tree.bounding_box[0].min()
bbox_max = tree.bounding_box[1].max()
from pytools.obj_array import make_obj_array
ball_centers = make_obj_array([
rng.uniform(queue, nballs, dtype=dtype, a=bbox_min-1, b=bbox_max+1)
for i in range(dims)])
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
run_area_query_test(ctx, queue, tree, ball_centers, ball_radii)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_elwise(ctx_getter, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
from boxtree.area_query import (
AreaQueryElementwiseTemplate, PeerListFinder)
template = AreaQueryElementwiseTemplate(
extra_args="""
coord_t *ball_radii,
%for ax in AXIS_NAMES[:dimensions]:
coord_t *ball_${ax},
%endfor
""",
ball_center_and_radius_expr="""
%for ax in AXIS_NAMES[:dimensions]:
${ball_center}.${ax} = ball_${ax}[${i}];
%endfor
${ball_radius} = ball_radii[${i}];
""",
leaf_found_op="")
peer_lists, evt = PeerListFinder(ctx)(queue, tree)
kernel = template.generate(
ctx,
dims,
tree.coord_dtype,
tree.box_id_dtype,
peer_lists.peer_list_starts.dtype,
tree.nlevels)
evt = kernel(
*template.unwrap_args(
tree, peer_lists, ball_radii, *ball_centers),
queue=queue,
wait_for=[evt],
cl.wait_for_events([evt])
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
# {{{ level restriction test
@pytest.mark.opencl
@pytest.mark.parametrize("lookbehind", [0, 1])
@pytest.mark.parametrize("skip_prune", [True, False])
@pytest.mark.parametrize("dims", [2, 3])
def test_level_restriction(ctx_getter, dims, skip_prune, lookbehind, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
from boxtree.tools import make_surface_particle_array
particles = make_surface_particle_array(queue, nparticles, dims, dtype, seed=15)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree_dev, _ = tb(queue, particles, kind="adaptive-level-restricted",
max_particles_in_box=30, debug=True,
skip_prune=skip_prune, lr_lookbehind=lookbehind)
def find_neighbors(leaf_box_centers, leaf_box_radii):
# We use an area query with a ball that is slightly larger than
# the size of a leaf box to find the neighboring leaves.
#
# Note that since this comes from an area query, the self box will be
# included in the neighbor list.
from boxtree.area_query import AreaQueryBuilder
aqb = AreaQueryBuilder(ctx)
ball_radii = cl.array.to_device(queue,
np.min(leaf_box_radii) / 2 + leaf_box_radii)
leaf_box_centers = [
cl.array.to_device(queue, axis) for axis in leaf_box_centers]
area_query, _ = aqb(queue, tree_dev, leaf_box_centers, ball_radii)
area_query = area_query.get(queue=queue)
return (area_query.leaves_near_ball_starts,
area_query.leaves_near_ball_lists)
# Get data to host for test.
tree = tree_dev.get(queue=queue)
# Find leaf boxes.
from boxtree import box_flags_enum
leaf_boxes, = (tree.box_flags & box_flags_enum.HAS_CHILDREN == 0).nonzero()
leaf_box_radii = np.empty(len(leaf_boxes))
leaf_box_centers = np.empty((dims, len(leaf_boxes)))
for idx, leaf_box in enumerate(leaf_boxes):
box_center = tree.box_centers[:, leaf_box]
ext_l, ext_h = tree.get_box_extent(leaf_box)
leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
leaf_box_centers[:, idx] = box_center
neighbor_starts, neighbor_and_self_lists = find_neighbors(
leaf_box_centers, leaf_box_radii)
# Check level restriction.
for leaf_idx, leaf in enumerate(leaf_boxes):
neighbors = neighbor_and_self_lists[
neighbor_starts[leaf_idx]:neighbor_starts[leaf_idx+1]]
neighbor_levels = np.array(tree.box_levels[neighbors], dtype=int)
leaf_level = int(tree.box_levels[leaf])
assert (np.abs(neighbor_levels - leaf_level) <= 1).all(), \
(neighbor_levels, leaf_level)
# }}}
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
# {{{ space invader query test
@pytest.mark.opencl
@pytest.mark.geo_lookup
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("dims", [2, 3])
def test_space_invader_query(ctx_getter, dims, dtype, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
if (dtype == np.float32
and dims == 2
and queue.device.platform.name == "Portable Computing Language"):
# arg list lenghts disagree
pytest.xfail("2D float doesn't work on POCL")
dtype = np.dtype(dtype)
nparticles = 10**5
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.area_query import (
LeavesToBallsLookupBuilder, SpaceInvaderQueryBuilder)
siqb = SpaceInvaderQueryBuilder(ctx)
# We can use leaves-to-balls lookup to get the set of overlapping balls for
# each box, and from there to compute the outer space invader distance.
lblb = LeavesToBallsLookupBuilder(ctx)
siq, _ = siqb(queue, tree, ball_centers, ball_radii)
lbl, _ = lblb(queue, tree, ball_centers, ball_radii)
# get data to host for test
tree = tree.get(queue=queue)
siq = siq.get(queue=queue)
lbl = lbl.get(queue=queue)
ball_centers = np.array([x.get() for x in ball_centers])
ball_radii = ball_radii.get()
# Find leaf boxes.
from boxtree import box_flags_enum
outer_space_invader_dist = np.zeros(tree.nboxes)
for ibox in range(tree.nboxes):
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
start, end = lbl.balls_near_box_starts[ibox:ibox + 2]
space_invaders = lbl.balls_near_box_lists[start:end]
if len(space_invaders) > 0:
outer_space_invader_dist[ibox] = np.max(np.abs(
tree.box_centers[:, ibox].reshape((-1, 1))
- ball_centers[:, space_invaders]))
assert np.allclose(siq, outer_space_invader_dist)
# }}}
# $ python test_tree.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main