Newer
Older
import sys
import pytools.test
import matplotlib.pyplot as pt
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
Andreas Klöckner
committed
def make_particle_array(queue, nparticles, dims, dtype, seed=15):
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=seed)
from pytools.obj_array import make_obj_array
return make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
# {{{ basic tree build test
Andreas Klöckner
committed
def test_particle_tree(ctx_getter, do_plot=False):
Andreas Klöckner
committed
for dims in [2, 3]:
Andreas Klöckner
committed
particles = make_particle_array(queue, nparticles, dims, dtype)
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
Andreas Klöckner
committed
tree = tb(queue, particles, max_particles_in_box=30, debug=True).get()
Andreas Klöckner
committed
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
Andreas Klöckner
committed
== unsorted_particles[:, tree.user_source_ids]).all()
from boxtree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
Andreas Klöckner
committed
plotter.set_bounding_box()
Andreas Klöckner
committed
extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner
committed
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
Andreas Klöckner
committed
start = tree.box_source_starts[ibox]
Andreas Klöckner
committed
box_particles = sorted_particles[:,start:start+tree.box_source_counts[ibox]]
good = (
(box_particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= box_particles)
)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
Andreas Klöckner
committed
plotter.draw_box(ibox, edgecolor="red")
if not all_good_here:
print "BAD BOX", ibox
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
print "done"
Andreas Klöckner
committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
@pytools.test.mark_test.opencl
def test_source_target_tree(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2, 3]:
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
sources = make_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_particle_array(queue, ntargets, dims, dtype,
seed=19)
if do_plot:
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True).get()
print "%d boxes, testing..." % tree.nboxes
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
all_good_so_far = True
if do_plot:
from boxtree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
for ibox in xrange(tree.nboxes):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
for what, particles in [
("sources", sorted_sources[:,src_start:src_start+tree.box_source_counts[ibox]]),
("targets", sorted_targets[:,tgt_start:tgt_start+tree.box_target_counts[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= particles)
).all(axis=0)
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
plotter.draw_box(ibox, edgecolor="red")
pt.show()
if not all_good_here:
print "BAD BOX %s %d" % (what, ibox)
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
print "done"
# }}}
# {{{ connectivity test
def test_tree_connectivity(ctx_getter):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
print "traversal built"
levels = tree.box_levels.get()
parents = tree.box_parent_ids.get().T
children = tree.box_child_ids.get().T
centers = tree.box_centers.get().T
# {{{ parent and child relations, levels match up
for ibox in xrange(1, tree.nboxes):
# /!\ Not testing box 0, has no parents
parent = parents[ibox]
assert levels[parent] + 1 == levels[ibox]
assert ibox in children[parent], ibox
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.show()
# {{{ neighbor_leaves (list 1) consists of leaves
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.neighbor_leaves_starts[ileaf:ileaf+2]
nbl = trav.neighbor_leaves_lists[start:end]
assert ibox in nbl
for jbox in nbl:
assert (0 == children[jbox]).all()
print "list 1 tested"
# }}}
# {{{ separated siblings (list 2) are actually separated
for ibox in xrange(tree.nboxes):
start, end = trav.sep_siblings_starts[ibox:ibox+2]
seps = trav.sep_siblings_lists[start:end]
assert (levels[seps] == levels[ibox]).all()
# three-ish box radii (half of size)
mindist = 2.5 * 0.5 * 2**-int(levels[ibox]) * tree.root_extent
icenter = centers[ibox]
for jbox in seps:
dist = la.norm(centers[jbox]-icenter)
assert dist > mindist, (dist, mindist)
# }}}
# {{{ sep_{smaller,bigger}_nonsiblings are duals of each other
# (technically, we only test one half of that)
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
rstart, rend = trav.sep_bigger_nonsiblings_starts[jbox:jbox+2]
assert ibox in trav.sep_bigger_nonsiblings_lists[rstart:rend], (ibox, jbox)
print "list 3, 4 are duals"
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
assert levels[ibox] < levels[jbox]
print "list 3 satisfies size assumption"
# }}}
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ibox in xrange(tree.nboxes):
start, end = trav.sep_bigger_nonsiblings_starts[ibox:ibox+2]
for jbox in trav.sep_bigger_nonsiblings_lists[start:end]:
assert levels[ibox] > levels[jbox]
print "list 4 satisfies size assumption"
# }}}
# {{{ fmm interaction completeness test
class ConstantOneExpansionWrangler:
"""This implements the 'analytical routines' for a Green's function that is
constant 1 everywhere. For 'charges' of 'ones', this should get every particle
a copy of the particle count.
"""
def __init__(self, tree):
self.tree = tree
def expansion_zeros(self):
return np.zeros(self.tree.nboxes, dtype=np.float64)
def potential_zeros(self):
return np.zeros(self.tree.ntargets, dtype=np.float64)
def _get_source_slice(self, ibox):
pstart = self.tree.box_source_starts[ibox]
return slice(
pstart, pstart + self.tree.box_source_counts[ibox])
def _get_target_slice(self, ibox):
pstart = self.tree.box_target_starts[ibox]
return slice(
pstart, pstart + self.tree.box_target_counts[ibox])
def reorder_src_weights(self, src_weights):
return src_weights[self.tree.user_source_ids]
def reorder_potentials(self, potentials):
return potentials[self.tree.sorted_target_ids]
def form_multipoles(self, leaf_boxes, src_weights):
mpoles = self.expansion_zeros()
for ibox in leaf_boxes:
pslice = self._get_source_slice(ibox)
mpoles[ibox] += np.sum(src_weights[pslice])
return mpoles
Andreas Klöckner
committed
def coarsen_multipoles(self, parent_boxes, start_parent_box, end_parent_box,
mpoles):
tree = self.tree
Andreas Klöckner
committed
for ibox in parent_boxes[start_parent_box:end_parent_box]:
for child in tree.box_child_ids[:, ibox]:
if child:
mpoles[ibox] += mpoles[child]
def do_direct_eval(self, leaf_boxes, neighbor_leaves_starts, neighbor_leaves_lists,
src_weights):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_target_slice(itgt_box)
src_sum = 0
start, end = neighbor_leaves_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in neighbor_leaves_lists[start:end]:
src_pslice = self._get_source_slice(isrc_box)
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
src_sum += np.sum(src_weights[src_pslice])
pot[tgt_pslice] = src_sum
return pot
def multipole_to_local(self, starts, lists, mpole_exps):
local_exps = self.expansion_zeros()
for itgt_box in xrange(self.tree.nboxes):
start, end = starts[itgt_box:itgt_box+2]
contrib = 0
#print itgt_box, "<-", lists[start:end]
for isrc_box in lists[start:end]:
contrib += mpole_exps[isrc_box]
local_exps[itgt_box] += contrib
return local_exps
def eval_multipoles(self, leaf_boxes, sep_smaller_nonsiblings_starts,
sep_smaller_nonsiblings_lists, mpole_exps):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_target_slice(itgt_box)
contrib = 0
start, end = sep_smaller_nonsiblings_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in sep_smaller_nonsiblings_lists[start:end]:
contrib += mpole_exps[isrc_box]
pot[tgt_pslice] += contrib
return pot
def refine_locals(self, start_box, end_box, local_exps):
for ibox in xrange(start_box, end_box):
local_exps[ibox] += local_exps[self.tree.box_parent_ids[ibox]]
return local_exps
def eval_locals(self, leaf_boxes, local_exps):
pot = self.potential_zeros()
for ibox in leaf_boxes:
tgt_pslice = self._get_target_slice(ibox)
pot[tgt_pslice] += local_exps[ibox]
return pot
@pytools.test.mark_test.opencl
def test_fmm_completeness(ctx_getter):
"""Tests whether the built FMM traversal structures and driver completely
capture all interactions.
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
nparticles = 10**6
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "tree built"
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
print "traversal built"
weights = np.random.randn(nparticles)
#weights = np.ones(nparticles)
weights_sum = np.sum(weights)
wrangler = ConstantOneExpansionWrangler(trav.tree)
assert (wrangler.reorder_potentials(
wrangler.reorder_src_weights(weights)) == weights).all()
pot = drive_fmm(trav, wrangler, weights)
# {{{ build, evaluate matrix (and identify missing interactions)
if 0:
mat = np.zeros((nparticles, nparticles), dtype)
from pytools import ProgressBar
pb = ProgressBar("matrix", nparticles)
for i in xrange(nparticles):
unit_vec = np.zeros(nparticles, dtype=dtype)
unit_vec[i] = 1
mat[:,i] = drive_fmm(trav, wrangler, unit_vec)
pb.progress()
pb.finished()
missing_tgts, missing_srcs = np.where(mat == 0)
if len(missing_tgts):
import matplotlib.pyplot as pt
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
for tgt, src in zip(missing_tgts, missing_srcs):
pt.plot(
trav.tree.particles[0][tgt],
trav.tree.particles[1][tgt],
"ro")
pt.plot(
trav.tree.particles[0][src],
trav.tree.particles[1][src],
"go")
pt.show()
#pt.spy(mat)
#pt.show()
# }}}
assert la.norm((pot - weights_sum) / nparticles) < 1e-8
# {{{ visualization helper (not a test)
def plot_traversal(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
nparticles = 10**4
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
#if do_plot:
#pt.plot(particles[0].get(), particles[1].get(), "x")
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "done"
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
#plotter.draw_box_numbers()
plotter.set_bounding_box()
from random import randrange, seed
# {{{ generic box drawing helper
def draw_some_box_lists(starts, lists, key_to_box=None,
count=5):
actual_count = 0
while actual_count < count:
if key_to_box is not None:
key = randrange(len(key_to_box))
ibox = key_to_box[key]
else:
key = ibox = randrange(tree.nboxes)
start, end = starts[key:key+2]
if start == end:
continue
#print ibox, start, end, lists[start:end]
for jbox in lists[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
plotter.draw_box(ibox, facecolor='red')
if 0:
# colleagues
draw_some_box_lists(
trav.colleagues_starts,
trav.colleagues_lists)
elif 0:
# near neighbors ("list 1")
draw_some_box_lists(
trav.neighbor_leaves_starts,
trav.neighbor_leaves_lists,
key_to_box=trav.leaf_boxes)
elif 0:
# well-separated siblings (list 2)
draw_some_box_lists(
trav.sep_siblings_starts,
trav.sep_siblings_lists)
elif 1:
# separated smaller non-siblings (list 3)
draw_some_box_lists(
trav.sep_smaller_nonsiblings_starts,
trav.sep_smaller_nonsiblings_lists,
key_to_box=trav.leaf_boxes)
elif 1:
# separated bigger non-siblings (list 4)
draw_some_box_lists(
trav.sep_bigger_nonsiblings_starts,
trav.sep_bigger_nonsiblings_lists)
# You can test individual routines by typing
# $ python test_kernels.py 'test_p2p(cl.create_some_context)'
if __name__ == "__main__":
# make sure that import failures get reported, instead of skipping the tests.
import pyopencl as cl
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker