Newer
Older
import sys
import pytools.test
import matplotlib.pyplot as pt
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
# {{{ basic tree build test
@pytools.test.mark_test.opencl
def test_tree(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
nparticles = 10**5
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
from htree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "%d boxes, testing..." % tree.nboxes
starts = tree.box_particle_starts.get()
pcounts = tree.box_particle_counts.get()
sorted_particles = np.array([pi.get() for pi in tree.particles])
centers = tree.box_centers.get()
levels = tree.box_levels.get()
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.original_particle_ids.get()]).all()
assert np.max(levels) + 1 == tree.nlevels
root_extent = tree.root_extent
all_good_so_far = True
if do_plot:
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
for ibox in xrange(tree.nboxes):
lev = int(levels[ibox])
box_size = root_extent / (1 << lev)
el = extent_low = centers[:, ibox] - 0.5*box_size
eh = extent_high = extent_low + box_size
box_particle_nrs = np.arange(starts[ibox], starts[ibox]+pcounts[ibox],
dtype=np.intp)
box_particles = sorted_particles[:,box_particle_nrs]
good = (
(box_particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= box_particles)
)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
pt.plot([el[0], eh[0], eh[0], el[0], el[0]],
[el[1], el[1], eh[1], eh[1], el[1]], "r-", lw=1)
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
print "done"
# }}}
# {{{ connectivity test
@pytools.test.mark_test.opencl
def test_tree_connectivity(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
from htree import TreeBuilder
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
from htree.traversal import FMMTraversalGenerator
tg = FMMTraversalGenerator(ctx)
trav = tg(queue, tree).get()
print "traversal built"
levels = tree.box_levels.get()
parents = tree.box_parent_ids.get().T
children = tree.box_child_ids.get().T
centers = tree.box_centers.get().T
# {{{ parent and child relations, levels match up
for ibox in xrange(1, tree.nboxes):
# /!\ Not testing box 0, has no parents
parent = parents[ibox]
assert levels[parent] + 1 == levels[ibox]
assert ibox in children[parent], ibox
if 0:
from htree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.show()
# {{{ neighbor_leaves (list 1) consists of leaves
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.neighbor_leaves_starts[ileaf:ileaf+2]
nbl = trav.neighbor_leaves_lists[start:end]
assert ibox in nbl
for jbox in nbl:
assert (0 == children[jbox]).all()
print "list 1 tested"
# }}}
# {{{ separated siblings (list 2) are actually separated
for ibox in xrange(tree.nboxes):
start, end = trav.sep_siblings_starts[ibox:ibox+2]
seps = trav.sep_siblings_lists[start:end]
assert (levels[seps] == levels[ibox]).all()
# three-ish box radii (half of size)
mindist = 2.5 * 0.5 * 2**-int(levels[ibox]) * tree.root_extent
icenter = centers[ibox]
for jbox in seps:
dist = la.norm(centers[jbox]-icenter)
assert dist > mindist, (dist, mindist)
# }}}
# {{{ sep_{smaller,bigger}_nonsiblings are duals of each other
# (technically, we only test one half of that)
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
rstart, rend = trav.sep_bigger_nonsiblings_starts[jbox:jbox+2]
assert ibox in trav.sep_bigger_nonsiblings_lists[rstart:rend], (ibox, jbox)
print "list 3, 4 are duals"
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
assert levels[ibox] < levels[jbox]
print "list 3 satisfies size assumption"
# }}}
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ibox in xrange(tree.nboxes):
start, end = trav.sep_bigger_nonsiblings_starts[ibox:ibox+2]
for jbox in trav.sep_bigger_nonsiblings_lists[start:end]:
assert levels[ibox] > levels[jbox]
print "list 4 satisfies size assumption"
# }}}
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# {{{ fmm interaction completeness test
class ConstantOneExpansionWrangler:
"""This implements the 'analytical routines' for a Green's function that is
constant 1 everywhere. For 'charges' of 'ones', this should get every particle
a copy of the particle count.
"""
def __init__(self, tree):
self.tree = tree
def expansion_zeros(self):
return np.zeros(self.tree.nboxes, dtype=np.float64)
def potential_zeros(self):
return np.zeros(self.tree.nparticles, dtype=np.float64)
def _get_particle_slice(self, ibox):
pstart = self.tree.box_particle_starts[ibox]
return slice(
pstart, pstart + self.tree.box_particle_counts[ibox])
def reorder_src_weights(self, src_weights):
return src_weights[self.tree.original_particle_ids]
def form_multipoles(self, leaf_boxes, src_weights):
mpoles = self.expansion_zeros()
for ibox in leaf_boxes:
pslice = self._get_particle_slice(ibox)
mpoles[ibox] += np.sum(src_weights[pslice])
return mpoles
def coarsen_multipoles(self, branch_boxes, start_branch_box, end_branch_box,
mpoles):
tree = self.tree
for ibox in branch_boxes[start_branch_box:end_branch_box]:
for child in tree.box_child_ids[:, ibox]:
if child:
mpoles[ibox] += mpoles[child]
def do_direct_eval(self, leaf_boxes, neighbor_leaves_starts, neighbor_leaves_lists,
src_weights):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_particle_slice(itgt_box)
src_sum = 0
start, end = neighbor_leaves_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in neighbor_leaves_lists[start:end]:
src_pslice = self._get_particle_slice(isrc_box)
src_sum += np.sum(src_weights[src_pslice])
pot[tgt_pslice] = src_sum
return pot
def multipole_to_local(self, starts, lists, mpole_exps):
local_exps = self.expansion_zeros()
for itgt_box in xrange(self.tree.nboxes):
start, end = starts[itgt_box:itgt_box+2]
contrib = 0
#print itgt_box, "<-", lists[start:end]
for isrc_box in lists[start:end]:
contrib += mpole_exps[isrc_box]
local_exps[itgt_box] += contrib
return local_exps
def eval_multipoles(self, leaf_boxes, sep_smaller_nonsiblings_starts,
sep_smaller_nonsiblings_lists, mpole_exps):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_particle_slice(itgt_box)
contrib = 0
start, end = sep_smaller_nonsiblings_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in sep_smaller_nonsiblings_lists[start:end]:
contrib += mpole_exps[isrc_box]
pot[tgt_pslice] += contrib
return pot
def refine_locals(self, start_box, end_box, local_exps):
for ibox in xrange(start_box, end_box):
local_exps[ibox] += local_exps[self.tree.box_parent_ids[ibox]]
return local_exps
def eval_locals(self, leaf_boxes, local_exps):
pot = self.potential_zeros()
for ibox in leaf_boxes:
tgt_pslice = self._get_particle_slice(ibox)
pot[tgt_pslice] += local_exps[ibox]
return pot
@pytools.test.mark_test.opencl
def test_fmm_completeness(ctx_getter, do_plot=False):
"""Tests whether the built FMM traversal structures and driver completely
capture all interactions.
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
nparticles = 10**6
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
from htree import TreeBuilder
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "tree built"
from htree.traversal import FMMTraversalGenerator
tg = FMMTraversalGenerator(ctx)
trav = tg(queue, tree).get()
print "traversal built"
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
weights = np.random.randn(nparticles)
#weights = np.ones(nparticles)
weights_sum = np.sum(weights)
from htree.fmm import drive_fmm
wrangler = ConstantOneExpansionWrangler(trav.tree)
pot = drive_fmm(trav, wrangler, weights)
# {{{ build, evaluate matrix (and identify missing interactions)
if 0:
mat = np.zeros((nparticles, nparticles), dtype)
from pytools import ProgressBar
pb = ProgressBar("matrix", nparticles)
for i in xrange(nparticles):
unit_vec = np.zeros(nparticles, dtype=dtype)
unit_vec[i] = 1
mat[:,i] = drive_fmm(trav, wrangler, unit_vec)
pb.progress()
pb.finished()
missing_tgts, missing_srcs = np.where(mat == 0)
if len(missing_tgts):
import matplotlib.pyplot as pt
from htree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
for tgt, src in zip(missing_tgts, missing_srcs):
pt.plot(
trav.tree.particles[0][tgt],
trav.tree.particles[1][tgt],
"ro")
pt.plot(
trav.tree.particles[0][src],
trav.tree.particles[1][src],
"go")
pt.show()
#pt.spy(mat)
#pt.show()
# }}}
assert la.norm((pot - weights_sum) / nparticles) < 1e-8
# {{{ visualization helper (not a test)
def plot_traversal(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
#if do_plot:
#pt.plot(particles[0].get(), particles[1].get(), "x")
from htree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "done"
from htree.traversal import FMMTraversalGenerator
tg = FMMTraversalGenerator(ctx)
trav = tg(queue, tree).get()
from htree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
#plotter.draw_box_numbers()
plotter.set_bounding_box()
from random import randrange, seed
# {{{ generic box drawing helper
def draw_some_box_lists(starts, lists, key_to_box=None,
count=5):
actual_count = 0
while actual_count < count:
if key_to_box is not None:
key = randrange(len(key_to_box))
ibox = key_to_box[key]
else:
key = ibox = randrange(tree.nboxes)
start, end = starts[key:key+2]
if start == end:
continue
plotter.draw_box(ibox, facecolor='red')
#print ibox, start, end, lists[start:end]
for jbox in lists[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
if 0:
# colleagues
draw_some_box_lists(
trav.colleagues_starts,
trav.colleagues_lists)
elif 0:
# near neighbors ("list 1")
draw_some_box_lists(
trav.neighbor_leaves_starts,
trav.neighbor_leaves_lists,
key_to_box=trav.leaf_boxes)
elif 0:
# well-separated siblings (list 2)
draw_some_box_lists(
trav.sep_siblings_starts,
trav.sep_siblings_lists)
elif 0:
# separated smaller non-siblings (list 3)
draw_some_box_lists(
trav.sep_smaller_nonsiblings_starts,
trav.sep_smaller_nonsiblings_lists,
key_to_box=trav.leaf_boxes)
elif 1:
# separated bigger non-siblings (list 4)
draw_some_box_lists(
trav.sep_bigger_nonsiblings_starts,
trav.sep_bigger_nonsiblings_lists)
# You can test individual routines by typing
# $ python test_kernels.py 'test_p2p(cl.create_some_context)'
if __name__ == "__main__":
# make sure that import failures get reported, instead of skipping the tests.
import pyopencl as cl
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker