Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import division
import numpy as np
import sys
import pytools.test
import matplotlib.pyplot as pt
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
@pytools.test.mark_test.opencl
def test_tree(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
nparticles = 10**5
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
from htree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "%d boxes, testing..." % tree.nboxes
starts = tree.box_starts.get()
pcounts = tree.box_particle_counts.get()
sorted_particles = np.array([pi.get() for pi in tree.particles])
centers = tree.box_centers.get()
levels = tree.box_levels.get()
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.original_particle_ids.get()]).all()
assert np.max(levels) + 1 == tree.nlevels
root_extent = tree.root_extent
all_good_so_far = True
if do_plot:
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
for ibox in xrange(tree.nboxes):
lev = int(levels[ibox])
box_size = root_extent / (1 << lev)
el = extent_low = centers[:, ibox] - 0.5*box_size
eh = extent_high = extent_low + box_size
box_particle_nrs = np.arange(starts[ibox], starts[ibox]+pcounts[ibox],
dtype=np.intp)
box_particles = sorted_particles[:,box_particle_nrs]
good = (
(box_particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= box_particles)
)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
pt.plot([el[0], eh[0], eh[0], el[0], el[0]],
[el[1], el[1], eh[1], eh[1], el[1]], "r-", lw=1)
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
print "done"
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
@pytools.test.mark_test.opencl
def test_tree_connectivity(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
nparticles = 10**3
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
from htree import TreeBuilder
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
levels = tree.box_levels.get()
parents = tree.box_parent_ids.get().T
children = tree.box_child_ids.get().T
for ibox in xrange(1, tree.nboxes):
parent = parents[ibox]
assert levels[parent] + 1 == levels[ibox]
assert ibox in children[parent], ibox
@pytools.test.mark_test.opencl
def test_traversal(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
from htree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "done"
from htree.traversal import FMMTraversalGenerator
tg = FMMTraversalGenerator(ctx)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
traversal = tg(queue, tree)
coll_starts = traversal.colleagues_starts.get()
coll_list = traversal.colleagues_list.get()
neigh_starts = traversal.neighbor_leaves_starts.get()
neigh_list = traversal.neighbor_leaves_list.get()
wss_starts = traversal.well_sep_siblings_starts.get()
wss_list = traversal.well_sep_siblings_list.get()
leaves = traversal.leaf_boxes.get()
from htree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
from random import randrange, seed
seed(5)
if 0:
# colleagues
for i in xrange(5):
ibox = randrange(tree.nboxes)
plotter.draw_box(ibox, facecolor='red')
start, end = coll_starts[ibox:ibox+2]
for jbox in coll_list[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
elif 1:
# near neighbors ("list 1")
for i in xrange(20):
ileaf = randrange(len(leaves))
ibox = leaves[ileaf]
plotter.draw_box(ibox, facecolor='red')
start, end = neigh_starts[ileaf:ileaf+2]
for jbox in neigh_list[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
else:
# well-separated siblings (list 2)
for i in xrange(1):
ibox = randrange(tree.nboxes)
plotter.draw_box(ibox, facecolor='red')
start, end = wss_starts[ibox:ibox+2]
print start, end
for jbox in wss_list[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
pt.show()
# You can test individual routines by typing
# $ python test_kernels.py 'test_p2p(cl.create_some_context)'
if __name__ == "__main__":
# make sure that import failures get reported, instead of skipping the tests.
import pyopencl as cl
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker