Newer
Older
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import sys
import pytools.test
import matplotlib.pyplot as pt
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
Andreas Klöckner
committed
def make_particle_array(queue, nparticles, dims, dtype, seed=15):
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=seed)
from pytools.obj_array import make_obj_array
return make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
# {{{ basic tree build test
Andreas Klöckner
committed
def test_particle_tree(ctx_getter, do_plot=False):
Andreas Klöckner
committed
for dims in [2, 3]:
Andreas Klöckner
committed
particles = make_particle_array(queue, nparticles, dims, dtype)
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
Andreas Klöckner
committed
tree = tb(queue, particles, max_particles_in_box=30, debug=True).get()
Andreas Klöckner
committed
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
Andreas Klöckner
committed
== unsorted_particles[:, tree.user_source_ids]).all()
from boxtree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
Andreas Klöckner
committed
plotter.set_bounding_box()
Andreas Klöckner
committed
extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner
committed
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
Andreas Klöckner
committed
start = tree.box_source_starts[ibox]
Andreas Klöckner
committed
box_particles = sorted_particles[:,start:start+tree.box_source_counts[ibox]]
good = (
(box_particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= box_particles)
)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
Andreas Klöckner
committed
plotter.draw_box(ibox, edgecolor="red")
if not all_good_here:
print "BAD BOX", ibox
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
print "done"
Andreas Klöckner
committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
@pytools.test.mark_test.opencl
def test_source_target_tree(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2, 3]:
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
sources = make_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_particle_array(queue, ntargets, dims, dtype,
seed=19)
if do_plot:
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True).get()
print "%d boxes, testing..." % tree.nboxes
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
all_good_so_far = True
if do_plot:
from boxtree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
for ibox in xrange(tree.nboxes):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
for what, particles in [
("sources", sorted_sources[:,src_start:src_start+tree.box_source_counts[ibox]]),
("targets", sorted_targets[:,tgt_start:tgt_start+tree.box_target_counts[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= particles)
).all(axis=0)
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
plotter.draw_box(ibox, edgecolor="red")
pt.show()
if not all_good_here:
print "BAD BOX %s %d" % (what, ibox)
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
print "done"
# }}}
# {{{ connectivity test
def test_tree_connectivity(ctx_getter):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
print "traversal built"
levels = tree.box_levels.get()
parents = tree.box_parent_ids.get().T
children = tree.box_child_ids.get().T
centers = tree.box_centers.get().T
# {{{ parent and child relations, levels match up
for ibox in xrange(1, tree.nboxes):
# /!\ Not testing box 0, has no parents
parent = parents[ibox]
assert levels[parent] + 1 == levels[ibox]
assert ibox in children[parent], ibox
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.show()
# {{{ neighbor_leaves (list 1) consists of leaves
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.neighbor_leaves_starts[ileaf:ileaf+2]
nbl = trav.neighbor_leaves_lists[start:end]
assert ibox in nbl
for jbox in nbl:
assert (0 == children[jbox]).all()
print "list 1 tested"
# }}}
# {{{ separated siblings (list 2) are actually separated
for ibox in xrange(tree.nboxes):
start, end = trav.sep_siblings_starts[ibox:ibox+2]
seps = trav.sep_siblings_lists[start:end]
assert (levels[seps] == levels[ibox]).all()
# three-ish box radii (half of size)
mindist = 2.5 * 0.5 * 2**-int(levels[ibox]) * tree.root_extent
icenter = centers[ibox]
for jbox in seps:
dist = la.norm(centers[jbox]-icenter)
assert dist > mindist, (dist, mindist)
# }}}
# {{{ sep_{smaller,bigger}_nonsiblings are duals of each other
# (technically, we only test one half of that)
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
rstart, rend = trav.sep_bigger_nonsiblings_starts[jbox:jbox+2]
assert ibox in trav.sep_bigger_nonsiblings_lists[rstart:rend], (ibox, jbox)
print "list 3, 4 are duals"
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
assert levels[ibox] < levels[jbox]
print "list 3 satisfies size assumption"
# }}}
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ibox in xrange(tree.nboxes):
start, end = trav.sep_bigger_nonsiblings_starts[ibox:ibox+2]
for jbox in trav.sep_bigger_nonsiblings_lists[start:end]:
assert levels[ibox] > levels[jbox]
print "list 4 satisfies size assumption"
# }}}
# {{{ fmm interaction completeness test
class ConstantOneExpansionWrangler:
"""This implements the 'analytical routines' for a Green's function that is
constant 1 everywhere. For 'charges' of 'ones', this should get every particle
a copy of the particle count.
"""
def __init__(self, tree):
self.tree = tree
def expansion_zeros(self):
return np.zeros(self.tree.nboxes, dtype=np.float64)
def potential_zeros(self):
return np.zeros(self.tree.ntargets, dtype=np.float64)
def _get_source_slice(self, ibox):
pstart = self.tree.box_source_starts[ibox]
return slice(
pstart, pstart + self.tree.box_source_counts[ibox])
def _get_target_slice(self, ibox):
pstart = self.tree.box_target_starts[ibox]
return slice(
pstart, pstart + self.tree.box_target_counts[ibox])
def reorder_src_weights(self, src_weights):
return src_weights[self.tree.user_source_ids]
def reorder_potentials(self, potentials):
return potentials[self.tree.sorted_target_ids]
def form_multipoles(self, leaf_boxes, src_weights):
mpoles = self.expansion_zeros()
for ibox in leaf_boxes:
pslice = self._get_source_slice(ibox)
mpoles[ibox] += np.sum(src_weights[pslice])
return mpoles
Andreas Klöckner
committed
def coarsen_multipoles(self, parent_boxes, start_parent_box, end_parent_box,
mpoles):
tree = self.tree
Andreas Klöckner
committed
for ibox in parent_boxes[start_parent_box:end_parent_box]:
for child in tree.box_child_ids[:, ibox]:
if child:
mpoles[ibox] += mpoles[child]
def do_direct_eval(self, leaf_boxes, neighbor_leaves_starts, neighbor_leaves_lists,
src_weights):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_target_slice(itgt_box)
src_sum = 0
start, end = neighbor_leaves_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in neighbor_leaves_lists[start:end]:
src_pslice = self._get_source_slice(isrc_box)
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
src_sum += np.sum(src_weights[src_pslice])
pot[tgt_pslice] = src_sum
return pot
def multipole_to_local(self, starts, lists, mpole_exps):
local_exps = self.expansion_zeros()
for itgt_box in xrange(self.tree.nboxes):
start, end = starts[itgt_box:itgt_box+2]
contrib = 0
#print itgt_box, "<-", lists[start:end]
for isrc_box in lists[start:end]:
contrib += mpole_exps[isrc_box]
local_exps[itgt_box] += contrib
return local_exps
def eval_multipoles(self, leaf_boxes, sep_smaller_nonsiblings_starts,
sep_smaller_nonsiblings_lists, mpole_exps):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_target_slice(itgt_box)
contrib = 0
start, end = sep_smaller_nonsiblings_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in sep_smaller_nonsiblings_lists[start:end]:
contrib += mpole_exps[isrc_box]
pot[tgt_pslice] += contrib
return pot
def refine_locals(self, start_box, end_box, local_exps):
for ibox in xrange(start_box, end_box):
local_exps[ibox] += local_exps[self.tree.box_parent_ids[ibox]]
return local_exps
def eval_locals(self, leaf_boxes, local_exps):
pot = self.potential_zeros()
for ibox in leaf_boxes:
tgt_pslice = self._get_target_slice(ibox)
pot[tgt_pslice] += local_exps[ibox]
return pot
@pytools.test.mark_test.opencl
def test_fmm_completeness(ctx_getter):
"""Tests whether the built FMM traversal structures and driver completely
capture all interactions.
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
nparticles = 10**6
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "tree built"
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
print "traversal built"
weights = np.random.randn(nparticles)
#weights = np.ones(nparticles)
weights_sum = np.sum(weights)
wrangler = ConstantOneExpansionWrangler(trav.tree)
assert (wrangler.reorder_potentials(
wrangler.reorder_src_weights(weights)) == weights).all()
pot = drive_fmm(trav, wrangler, weights)
# {{{ build, evaluate matrix (and identify missing interactions)
if 0:
mat = np.zeros((nparticles, nparticles), dtype)
from pytools import ProgressBar
pb = ProgressBar("matrix", nparticles)
for i in xrange(nparticles):
unit_vec = np.zeros(nparticles, dtype=dtype)
unit_vec[i] = 1
mat[:,i] = drive_fmm(trav, wrangler, unit_vec)
pb.progress()
pb.finished()
missing_tgts, missing_srcs = np.where(mat == 0)
if len(missing_tgts):
import matplotlib.pyplot as pt
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
for tgt, src in zip(missing_tgts, missing_srcs):
pt.plot(
trav.tree.particles[0][tgt],
trav.tree.particles[1][tgt],
"ro")
pt.plot(
trav.tree.particles[0][src],
trav.tree.particles[1][src],
"go")
pt.show()
#pt.spy(mat)
#pt.show()
# }}}
assert la.norm((pot - weights_sum) / nparticles) < 1e-8
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# {{{ geometry query test
def test_geometry_query(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dims = 2
nparticles = 10**5
dtype = np.float64
particles = make_particle_array(queue, nparticles, dims, dtype)
if do_plot:
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "%d boxes, testing..." % tree.nboxes
nballs = 10**4
ball_centers = make_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.geo_lookup import LeavesToBallsLookupBuilder
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
lblb = LeavesToBallsLookupBuilder(ctx)
lbl = lblb(queue, tree, ball_centers, ball_radii)
# get data to host for test
tree = tree.get()
lbl = lbl.get()
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
for ibox in xrange(tree.nboxes):
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
#print sorted(lbl.balls_near_box_lists[start:end])
#print sorted(near_circles)
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# {{{ visualization helper (not a test)
def plot_traversal(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
nparticles = 10**4
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
#if do_plot:
#pt.plot(particles[0].get(), particles[1].get(), "x")
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "done"
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
#plotter.draw_box_numbers()
plotter.set_bounding_box()
from random import randrange, seed
# {{{ generic box drawing helper
def draw_some_box_lists(starts, lists, key_to_box=None,
count=5):
actual_count = 0
while actual_count < count:
if key_to_box is not None:
key = randrange(len(key_to_box))
ibox = key_to_box[key]
else:
key = ibox = randrange(tree.nboxes)
start, end = starts[key:key+2]
if start == end:
continue
#print ibox, start, end, lists[start:end]
for jbox in lists[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
plotter.draw_box(ibox, facecolor='red')
if 0:
# colleagues
draw_some_box_lists(
trav.colleagues_starts,
trav.colleagues_lists)
elif 0:
# near neighbors ("list 1")
draw_some_box_lists(
trav.neighbor_leaves_starts,
trav.neighbor_leaves_lists,
key_to_box=trav.leaf_boxes)
elif 0:
# well-separated siblings (list 2)
draw_some_box_lists(
trav.sep_siblings_starts,
trav.sep_siblings_lists)
elif 1:
# separated smaller non-siblings (list 3)
draw_some_box_lists(
trav.sep_smaller_nonsiblings_starts,
trav.sep_smaller_nonsiblings_lists,
key_to_box=trav.leaf_boxes)
elif 1:
# separated bigger non-siblings (list 4)
draw_some_box_lists(
trav.sep_bigger_nonsiblings_starts,
trav.sep_bigger_nonsiblings_lists)
# You can test individual routines by typing
# $ python test_kernels.py 'test_p2p(cl.create_some_context)'
if __name__ == "__main__":
# make sure that import failures get reported, instead of skipping the tests.
import pyopencl as cl
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker