Newer
Older
from __future__ import absolute_import
from __future__ import print_function
import six
from six.moves import range
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.tools import make_normal_particle_array
logger = logging.getLogger(__name__)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("nparticles", [9, 4096, 10**5])
def test_bounding_box(ctx_getter, dtype, dims, nparticles):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree.tools import AXIS_NAMES
from boxtree.bounding_box import BoundingBoxFinder
bbf = BoundingBoxFinder(ctx)
axis_names = AXIS_NAMES[:dims]
logger.info("%s - %s %s" % (dtype, dims, nparticles))
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
bbox_min = [np.min(x.get()) for x in particles]
bbox_max = [np.max(x.get()) for x in particles]
bbox_cl, evt = bbf(particles, radii=None)
bbox_cl = bbox_cl.get()
bbox_min_cl = np.empty(dims, dtype)
bbox_max_cl = np.empty(dims, dtype)
for i, ax in enumerate(axis_names):
bbox_min_cl[i] = bbox_cl["min_"+ax]
bbox_max_cl[i] = bbox_cl["max_"+ax]
assert (bbox_min == bbox_min_cl).all()
assert (bbox_max == bbox_max_cl).all()
# {{{ test basic (no source/target distinction) tree build
def run_build_test(builder, queue, dims, dtype, nparticles, do_plot,
max_particles_in_box=30, **kwargs):
if dtype == np.float32:
tol = 1e-4
elif dtype == np.float64:
tol = 1e-12
else:
raise RuntimeError("unsupported dtype: %s" % dtype)
if (dtype == np.float32
and dims == 2
and queue.device.platform.name == "Portable Computing Language"):
pytest.xfail("2D float doesn't work on POCL")
logger.info(75*"-")
logger.info("%dD %s - %d particles - max %d per box - %s" % (
dims, dtype.type.__name__, nparticles, max_particles_in_box,
" - ".join("%s: %s" % (k, v) for k, v in six.iteritems(kwargs))))
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
tree, _ = builder(queue, particles,
max_particles_in_box=max_particles_in_box, debug=True,
tree = tree.get(queue=queue)
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.user_source_ids]).all()
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
from boxtree import box_flags_enum as bfe
scaled_tol = tol*tree.root_extent
# Empty boxes exist in non-pruned trees--which themselves are undocumented.
# These boxes will fail these tests.
if not (tree.box_flags[ibox] & bfe.HAS_OWN_SRCNTGTS):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), (
ibox, extent_low, tree.bounding_box[0])
assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), (
ibox, extent_high, tree.bounding_box[1])
start = tree.box_source_starts[ibox]
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
box_particles = sorted_particles[:,
start:start+tree.box_source_counts_cumul[ibox]]
(box_particles < extent_high[:, np.newaxis] + scaled_tol)
(extent_low[:, np.newaxis] - scaled_tol <= box_particles)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
plotter.draw_box(ibox, edgecolor="red")
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
def particle_tree_test_decorator(f):
f = pytest.mark.opencl(f)
f = pytest.mark.parametrize("dtype", [np.float64, np.float32])(f)
f = pytest.mark.parametrize("dims", [2, 3])(f)
def wrapper(*args, **kwargs):
logging.basicConfig(level=logging.INFO)
f(*args, **kwargs)
return f
@particle_tree_test_decorator
def test_single_boxparticle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims,
dtype, 4, do_plot=do_plot)
@particle_tree_test_decorator
def test_two_level_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims,
dtype, 50, do_plot=do_plot)
@particle_tree_test_decorator
def test_unpruned_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
# test unpruned tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot, skip_prune=True)
@particle_tree_test_decorator
def test_particle_tree_with_reallocations(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot, nboxes_guess=5)
@particle_tree_test_decorator
def test_particle_tree_with_many_empty_leaves(
ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot, max_particles_in_box=5)
@particle_tree_test_decorator
def test_vanilla_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot)
Andreas Klöckner
committed
@particle_tree_test_decorator
def test_non_adaptive_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**4,
do_plot=do_plot, non_adaptive=True)
# }}}
# {{{ source/target tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_source_target_tree(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
Andreas Klöckner
committed
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
Andreas Klöckner
committed
if do_plot:
import matplotlib.pyplot as pt
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
Andreas Klöckner
committed
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
Andreas Klöckner
committed
queue.finish()
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True)
tree = tree.get(queue=queue)
Andreas Klöckner
committed
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
Andreas Klöckner
committed
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
Andreas Klöckner
committed
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
Andreas Klöckner
committed
all_good_so_far = True
Andreas Klöckner
committed
if do_plot:
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
Andreas Klöckner
committed
extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner
committed
assert (extent_low >=
tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <=
tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
Andreas Klöckner
committed
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
Andreas Klöckner
committed
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
for what, particles in [
src_start:src_start+tree.box_source_counts_cumul[ibox]]),
tgt_start:tgt_start+tree.box_target_counts_cumul[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= particles)
).all(axis=0)
Andreas Klöckner
committed
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
Andreas Klöckner
committed
plotter.draw_box(ibox, edgecolor="red")
pt.show()
Andreas Klöckner
committed
if not all_good_here:
Andreas Klöckner
committed
all_good_so_far = all_good_so_far and all_good_here
assert all_good_so_far
Andreas Klöckner
committed
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
Andreas Klöckner
committed
Andreas Klöckner
committed
# {{{ test sources/targets-with-extent tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_extent_tree(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 100000
ntargets = 200000
dtype = np.float64
npoint_sources_per_source = 16
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=13)
source_radii = 2**rng.uniform(queue, nsources, dtype=dtype,
a=-10, b=0)
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype,
a=-10, b=0)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
dev_tree, _ = tb(queue, sources, targets=targets,
source_radii=source_radii, target_radii=target_radii,
max_particles_in_box=10, debug=True)
logger.info("transfer tree, check orderings")
tree = dev_tree.get(queue=queue)
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
sorted_source_radii = tree.source_radii
sorted_target_radii = tree.target_radii
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
unsorted_source_radii = source_radii.get()
unsorted_target_radii = target_radii.get()
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
assert (sorted_source_radii
== unsorted_source_radii[tree.user_source_ids]).all()
# {{{ test box structure, stick-out criterion
logger.info("test box structure, stick-out criterion")
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
if ntargets:
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
assert (sorted_target_radii
== unsorted_target_radii[user_target_ids]).all()
all_good_so_far = True
# {{{ check sources, targets
extent_low, extent_high = tree.get_box_extent(ibox)
box_radius = np.max(extent_high-extent_low) * 0.5
stick_out_dist = tree.stick_out_factor * box_radius
assert (extent_low >=
tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <=
tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
for what, starts, counts, points, radii in [
("source", tree.box_source_starts, tree.box_source_counts_cumul,
sorted_sources, sorted_source_radii),
("target", tree.box_target_starts, tree.box_target_counts_cumul,
sorted_targets, sorted_target_radii),
]:
bstart = starts[ibox]
bslice = slice(bstart, bstart+counts[ibox])
check_particles = points[:, bslice]
check_radii = radii[bslice]
good = (
(check_particles + check_radii
< extent_high[:, np.newaxis] + stick_out_dist)
&
(extent_low[:, np.newaxis] - stick_out_dist
<= check_particles - check_radii)
).all(axis=0)
all_good_here = good.all()
if not all_good_here:
print("BAD BOX %s %d level %d" % (what, ibox, tree.box_levels[ibox]))
all_good_so_far = all_good_so_far and all_good_here
assert all_good_here
# }}}
assert all_good_so_far
# }}}
# {{{ create, link point sources
logger.info("creating point sources")
np.random.seed(20)
from pytools.obj_array import make_obj_array
point_sources = make_obj_array([
cl.array.to_device(queue,
unsorted_sources[i][:, np.newaxis]
+ unsorted_source_radii[:, np.newaxis]
* np.random.uniform(
)
for i in range(dims)])
point_source_starts = cl.array.arange(queue,
0, (nsources+1)*npoint_sources_per_source, npoint_sources_per_source,
dtype=tree.particle_id_dtype)
from boxtree.tree import link_point_sources
dev_tree = link_point_sources(queue, dev_tree,
point_source_starts, point_sources,
debug=True)
# }}}
# }}}
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_geometry_query(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.geo_lookup import LeavesToBallsLookupBuilder
lblb = LeavesToBallsLookupBuilder(ctx)
lbl, _ = lblb(queue, tree, ball_centers, ball_radii)
tree = tree.get(queue=queue)
lbl = lbl.get(queue=queue)
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
#print sorted(lbl.balls_near_box_lists[start:end])
#print sorted(near_circles)
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# $ python test_tree.py 'test_routine(cl.create_some_context)'