Newer
Older
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import pytest
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
from boxtree.tools import make_normal_particle_array
logger = logging.getLogger(__name__)
# {{{ bounding box test
def test_bounding_box(ctx_getter):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree.tools import AXIS_NAMES
from boxtree.bounding_box import BoundingBoxFinder
bbf = BoundingBoxFinder(ctx)
#for dtype in [np.float32, np.float64]:
for dtype in [np.float64, np.float32]:
for dims in [2, 3]:
axis_names = AXIS_NAMES[:dims]
for nparticles in [9, 4096, 10**5]:
logger.info("%s - %s %s" % (dtype, dims, nparticles))
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
bbox_min = [np.min(x.get()) for x in particles]
bbox_max = [np.max(x.get()) for x in particles]
bbox_cl, evt = bbf(particles, radii=None)
bbox_cl = bbox_cl.get()
bbox_min_cl = np.empty(dims, dtype)
bbox_max_cl = np.empty(dims, dtype)
for i, ax in enumerate(axis_names):
bbox_min_cl[i] = bbox_cl["min_"+ax]
bbox_max_cl[i] = bbox_cl["max_"+ax]
assert (bbox_min == bbox_min_cl).all()
assert (bbox_max == bbox_max_cl).all()
# }}}
# {{{ test basic tree build
def run_build_test(builder, queue, dims, dtype, nparticles, do_plot, max_particles_in_box=30, **kwargs):
if dtype == np.float32:
tol = 1e-4
elif dtype == np.float64:
tol = 1e-12
else:
raise RuntimeError("unsupported dtype: %s" % dtype)
logger.info(75*"-")
logger.info("%dD %s - %d particles - max %d per box - %s" % (
dims, dtype.type.__name__, nparticles, max_particles_in_box,
" - ".join("%s: %s" % (k, v) for k, v in kwargs.iteritems())))
logger.info(75*"-")
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
tree, _ = builder(queue, particles,
max_particles_in_box=max_particles_in_box, debug=True,
**kwargs)
tree = tree.get()
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.user_source_ids]).all()
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
from boxtree import box_flags_enum as bfe
scaled_tol = tol*tree.root_extent
# Empty boxes exist in non-pruned trees--which themselves are undocumented.
# These boxes will fail these tests.
if not (tree.box_flags[ibox] & bfe.HAS_OWN_SRCNTGTS):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), (
ibox, extent_low, tree.bounding_box[0])
assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), (
ibox, extent_high, tree.bounding_box[1])
start = tree.box_source_starts[ibox]
box_particles = sorted_particles[:,start:start+tree.box_source_counts[ibox]]
good = (
(box_particles < extent_high[:, np.newaxis] + scaled_tol)
(extent_low[:, np.newaxis] - scaled_tol <= box_particles)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
plotter.draw_box(ibox, edgecolor="red")
if not all_good_here:
print "BAD BOX", ibox
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
@pytest.mark.opencl
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
@pytest.mark.parametrize("dims", [2, 3])
def test_particle_tree(ctx_getter, dtype, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
# test single-box corner case
run_build_test(builder, queue, dims,
dtype, 4, do_plot=False)
# test bi-level corner case
run_build_test(builder, queue, dims,
dtype, 50, do_plot=False)
# test unpruned tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, skip_prune=True)
# exercise reallocation code
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, nboxes_guess=5)
# test many empty leaves corner case
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, max_particles_in_box=5)
# test vanilla tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot)
Andreas Klöckner
committed
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_source_target_tree(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
Andreas Klöckner
committed
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
Andreas Klöckner
committed
if do_plot:
import matplotlib.pyplot as pt
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
Andreas Klöckner
committed
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
Andreas Klöckner
committed
queue.finish()
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True)
tree = tree.get()
Andreas Klöckner
committed
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
Andreas Klöckner
committed
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
Andreas Klöckner
committed
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
Andreas Klöckner
committed
all_good_so_far = True
Andreas Klöckner
committed
if do_plot:
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
Andreas Klöckner
committed
for ibox in xrange(tree.nboxes):
extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner
committed
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
Andreas Klöckner
committed
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
Andreas Klöckner
committed
for what, particles in [
("sources", sorted_sources[:,src_start:src_start+tree.box_source_counts[ibox]]),
("targets", sorted_targets[:,tgt_start:tgt_start+tree.box_target_counts[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= particles)
).all(axis=0)
Andreas Klöckner
committed
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
Andreas Klöckner
committed
plotter.draw_box(ibox, edgecolor="red")
pt.show()
Andreas Klöckner
committed
if not all_good_here:
print "BAD BOX %s %d" % (what, ibox)
Andreas Klöckner
committed
all_good_so_far = all_good_so_far and all_good_here
Andreas Klöckner
committed
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
Andreas Klöckner
committed
assert all_good_so_far
Andreas Klöckner
committed
Andreas Klöckner
committed
# {{{ test sources/targets-with-extent tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_extent_tree(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 100000
ntargets = 200000
dtype = np.float64
npoint_sources_per_source = 16
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=13)
source_radii = 2**rng.uniform(queue, nsources, dtype=dtype,
a=-10, b=0)
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype,
a=-10, b=0)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
dev_tree, _ = tb(queue, sources, targets=targets,
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
source_radii=source_radii, target_radii=target_radii,
max_particles_in_box=10, debug=True)
logger.info("transfer tree, check orderings")
tree = dev_tree.get()
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
sorted_source_radii = tree.source_radii
sorted_target_radii = tree.target_radii
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
unsorted_source_radii = source_radii.get()
unsorted_target_radii = target_radii.get()
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
assert (sorted_source_radii
== unsorted_source_radii[tree.user_source_ids]).all()
# {{{ test box structure, stick-out criterion
logger.info("test box structure, stick-out criterion")
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
if ntargets:
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
assert (sorted_target_radii
== unsorted_target_radii[user_target_ids]).all()
all_good_so_far = True
for ibox in xrange(tree.nboxes):
extent_low, extent_high = tree.get_box_extent(ibox)
box_radius = np.max(extent_high-extent_low) * 0.5
stick_out_dist = tree.stick_out_factor * box_radius
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
# {{{ sources
for what, starts, counts, points, radii in [
("source", tree.box_source_starts, tree.box_source_counts,
sorted_sources, sorted_source_radii),
("target", tree.box_target_starts, tree.box_target_counts,
sorted_targets, sorted_target_radii),
]:
bstart = starts[ibox]
bslice = slice(bstart, bstart+counts[ibox])
check_particles = points[:, bslice]
check_radii = radii[bslice]
good = (
(check_particles + check_radii
< extent_high[:, np.newaxis] + stick_out_dist)
&
(extent_low[:, np.newaxis] - stick_out_dist
<= check_particles - check_radii)
).all(axis=0)
all_good_here = good.all()
if not all_good_here:
print "BAD BOX %s %d level %d" % (what, ibox, tree.box_levels[ibox])
all_good_so_far = all_good_so_far and all_good_here
assert all_good_here
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
assert all_good_so_far
# }}}
# {{{ create, link point sources
logger.info("creating point sources")
np.random.seed(20)
from pytools.obj_array import make_obj_array
point_sources = make_obj_array([
cl.array.to_device(queue,
unsorted_sources[i][:, np.newaxis]
+ unsorted_source_radii[:, np.newaxis]
* np.random.uniform(
-1, 1, size=(nsources, npoint_sources_per_source))
)
for i in range(dims)])
point_source_starts = cl.array.arange(queue,
0, (nsources+1)*npoint_sources_per_source, npoint_sources_per_source,
dtype=tree.particle_id_dtype)
dev_tree = dev_tree.link_point_sources(queue,
point_source_starts, point_sources,
debug=True)
# }}}
# }}}
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_geometry_query(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.geo_lookup import LeavesToBallsLookupBuilder
lblb = LeavesToBallsLookupBuilder(ctx)
lbl, _ = lblb(queue, tree, ball_centers, ball_radii)
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# get data to host for test
tree = tree.get()
lbl = lbl.get()
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
for ibox in xrange(tree.nboxes):
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
#print sorted(lbl.balls_near_box_lists[start:end])
#print sorted(near_circles)
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# You can test individual routines by typing
# $ python test_tree.py 'test_routine(cl.create_some_context)'