from __future__ import division __copyright__ = "Copyright (C) 2012 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numpy.linalg as la import sys import pytest import logging import pyopencl as cl from pyopencl.tools import pytest_generate_tests_for_pyopencl \ as pytest_generate_tests from boxtree.tools import make_normal_particle_array logger = logging.getLogger(__name__) # {{{ bounding box test def test_bounding_box(ctx_getter): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree.tools import AXIS_NAMES from boxtree.bounding_box import BoundingBoxFinder bbf = BoundingBoxFinder(ctx) #for dtype in [np.float32, np.float64]: for dtype in [np.float64, np.float32]: for dims in [2, 3]: axis_names = AXIS_NAMES[:dims] for nparticles in [9, 4096, 10**5]: logger.info("%s - %s %s" % (dtype, dims, nparticles)) particles = make_normal_particle_array(queue, nparticles, dims, dtype) bbox_min = [np.min(x.get()) for x in particles] bbox_max = [np.max(x.get()) for x in particles] bbox_cl, evt = bbf(particles, radii=None) bbox_cl = bbox_cl.get() bbox_min_cl = np.empty(dims, dtype) bbox_max_cl = np.empty(dims, dtype) for i, ax in enumerate(axis_names): bbox_min_cl[i] = bbox_cl["min_"+ax] bbox_max_cl[i] = bbox_cl["max_"+ax] assert (bbox_min == bbox_min_cl).all() assert (bbox_max == bbox_max_cl).all() # }}} # {{{ test basic tree build def run_build_test(builder, queue, dims, dtype, nparticles, do_plot, max_particles_in_box=30, **kwargs): dtype = np.dtype(dtype) if dtype == np.float32: tol = 1e-4 elif dtype == np.float64: tol = 1e-12 else: raise RuntimeError("unsupported dtype: %s" % dtype) logger.info(75*"-") logger.info("%dD %s - %d particles - max %d per box - %s" % ( dims, dtype.type.__name__, nparticles, max_particles_in_box, " - ".join("%s: %s" % (k, v) for k, v in kwargs.iteritems()))) logger.info(75*"-") particles = make_normal_particle_array(queue, nparticles, dims, dtype) if do_plot: import matplotlib.pyplot as pt pt.plot(particles[0].get(), particles[1].get(), "x") queue.finish() tree, _ = builder(queue, particles, max_particles_in_box=max_particles_in_box, debug=True, **kwargs) tree = tree.get() sorted_particles = np.array(list(tree.sources)) unsorted_particles = np.array([pi.get() for pi in particles]) assert (sorted_particles == unsorted_particles[:, tree.user_source_ids]).all() all_good_so_far = True if do_plot: from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() from boxtree import box_flags_enum as bfe scaled_tol = tol*tree.root_extent for ibox in xrange(tree.nboxes): # Empty boxes exist in non-pruned trees--which themselves are undocumented. # These boxes will fail these tests. if not (tree.box_flags[ibox] & bfe.HAS_OWN_SRCNTGTS): continue extent_low, extent_high = tree.get_box_extent(ibox) assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), ( ibox, extent_low, tree.bounding_box[0]) assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), ( ibox, extent_high, tree.bounding_box[1]) start = tree.box_source_starts[ibox] box_particles = sorted_particles[:,start:start+tree.box_source_counts[ibox]] good = ( (box_particles < extent_high[:, np.newaxis] + scaled_tol) & (extent_low[:, np.newaxis] - scaled_tol <= box_particles) ) all_good_here = good.all() if do_plot and not all_good_here and all_good_so_far: pt.plot( box_particles[0, np.where(~good)[1]], box_particles[1, np.where(~good)[1]], "ro") plotter.draw_box(ibox, edgecolor="red") if not all_good_here: print "BAD BOX", ibox all_good_so_far = all_good_so_far and all_good_here if do_plot: pt.gca().set_aspect("equal", "datalim") pt.show() assert all_good_so_far @pytest.mark.opencl @pytest.mark.parametrize("dtype", [np.float64, np.float32]) @pytest.mark.parametrize("dims", [2, 3]) def test_particle_tree(ctx_getter, dtype, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) # test single-box corner case run_build_test(builder, queue, dims, dtype, 4, do_plot=False) # test bi-level corner case run_build_test(builder, queue, dims, dtype, 50, do_plot=False) # test unpruned tree build run_build_test(builder, queue, dims, dtype, 10**5, do_plot=False, skip_prune=True) # exercise reallocation code run_build_test(builder, queue, dims, dtype, 10**5, do_plot=False, nboxes_guess=5) # test many empty leaves corner case run_build_test(builder, queue, dims, dtype, 10**5, do_plot=False, max_particles_in_box=5) # test vanilla tree build run_build_test(builder, queue, dims, dtype, 10**5, do_plot=do_plot) @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) def test_source_target_tree(ctx_getter, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 2 * 10**5 ntargets = 3 * 10**5 dtype = np.float64 sources = make_normal_particle_array(queue, nsources, dims, dtype, seed=12) targets = make_normal_particle_array(queue, ntargets, dims, dtype, seed=19) if do_plot: import matplotlib.pyplot as pt pt.plot(sources[0].get(), sources[1].get(), "rx") pt.plot(targets[0].get(), targets[1].get(), "g+") from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() tree, _ = tb(queue, sources, targets=targets, max_particles_in_box=10, debug=True) tree = tree.get() sorted_sources = np.array(list(tree.sources)) sorted_targets = np.array(list(tree.targets)) unsorted_sources = np.array([pi.get() for pi in sources]) unsorted_targets = np.array([pi.get() for pi in targets]) assert (sorted_sources == unsorted_sources[:, tree.user_source_ids]).all() user_target_ids = np.empty(tree.ntargets, dtype=np.intp) user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp) assert (sorted_targets == unsorted_targets[:, user_target_ids]).all() all_good_so_far = True if do_plot: from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() for ibox in xrange(tree.nboxes): extent_low, extent_high = tree.get_box_extent(ibox) assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox src_start = tree.box_source_starts[ibox] tgt_start = tree.box_target_starts[ibox] for what, particles in [ ("sources", sorted_sources[:,src_start:src_start+tree.box_source_counts[ibox]]), ("targets", sorted_targets[:,tgt_start:tgt_start+tree.box_target_counts[ibox]]), ]: good = ( (particles < extent_high[:, np.newaxis]) & (extent_low[:, np.newaxis] <= particles) ).all(axis=0) all_good_here = good.all() if do_plot and not all_good_here: pt.plot( particles[0, np.where(~good)[0]], particles[1, np.where(~good)[0]], "ro") plotter.draw_box(ibox, edgecolor="red") pt.show() if not all_good_here: print "BAD BOX %s %d" % (what, ibox) all_good_so_far = all_good_so_far and all_good_here if do_plot: pt.gca().set_aspect("equal", "datalim") pt.show() assert all_good_so_far # }}} # {{{ test sources/targets-with-extent tree @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) def test_extent_tree(ctx_getter, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 100000 ntargets = 200000 dtype = np.float64 npoint_sources_per_source = 16 sources = make_normal_particle_array(queue, nsources, dims, dtype, seed=12) targets = make_normal_particle_array(queue, ntargets, dims, dtype, seed=19) from pyopencl.clrandom import RanluxGenerator rng = RanluxGenerator(queue, seed=13) source_radii = 2**rng.uniform(queue, nsources, dtype=dtype, a=-10, b=0) target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype, a=-10, b=0) from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() dev_tree, _ = tb(queue, sources, targets=targets, source_radii=source_radii, target_radii=target_radii, max_particles_in_box=10, debug=True) logger.info("transfer tree, check orderings") tree = dev_tree.get() sorted_sources = np.array(list(tree.sources)) sorted_targets = np.array(list(tree.targets)) sorted_source_radii = tree.source_radii sorted_target_radii = tree.target_radii unsorted_sources = np.array([pi.get() for pi in sources]) unsorted_targets = np.array([pi.get() for pi in targets]) unsorted_source_radii = source_radii.get() unsorted_target_radii = target_radii.get() assert (sorted_sources == unsorted_sources[:, tree.user_source_ids]).all() assert (sorted_source_radii == unsorted_source_radii[tree.user_source_ids]).all() # {{{ test box structure, stick-out criterion logger.info("test box structure, stick-out criterion") user_target_ids = np.empty(tree.ntargets, dtype=np.intp) user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp) if ntargets: assert (sorted_targets == unsorted_targets[:, user_target_ids]).all() assert (sorted_target_radii == unsorted_target_radii[user_target_ids]).all() all_good_so_far = True for ibox in xrange(tree.nboxes): extent_low, extent_high = tree.get_box_extent(ibox) box_radius = np.max(extent_high-extent_low) * 0.5 stick_out_dist = tree.stick_out_factor * box_radius assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox # {{{ sources for what, starts, counts, points, radii in [ ("source", tree.box_source_starts, tree.box_source_counts, sorted_sources, sorted_source_radii), ("target", tree.box_target_starts, tree.box_target_counts, sorted_targets, sorted_target_radii), ]: bstart = starts[ibox] bslice = slice(bstart, bstart+counts[ibox]) check_particles = points[:, bslice] check_radii = radii[bslice] good = ( (check_particles + check_radii < extent_high[:, np.newaxis] + stick_out_dist) & (extent_low[:, np.newaxis] - stick_out_dist <= check_particles - check_radii) ).all(axis=0) all_good_here = good.all() if not all_good_here: print "BAD BOX %s %d level %d" % (what, ibox, tree.box_levels[ibox]) all_good_so_far = all_good_so_far and all_good_here assert all_good_here # }}} assert all_good_so_far # }}} # {{{ create, link point sources logger.info("creating point sources") np.random.seed(20) from pytools.obj_array import make_obj_array point_sources = make_obj_array([ cl.array.to_device(queue, unsorted_sources[i][:, np.newaxis] + unsorted_source_radii[:, np.newaxis] * np.random.uniform( -1, 1, size=(nsources, npoint_sources_per_source)) ) for i in range(dims)]) point_source_starts = cl.array.arange(queue, 0, (nsources+1)*npoint_sources_per_source, npoint_sources_per_source, dtype=tree.particle_id_dtype) dev_tree = dev_tree.link_point_sources(queue, point_source_starts, point_sources, debug=True) # }}} # }}} # {{{ geometry query test @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) def test_geometry_query(ctx_getter, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nparticles = 10**5 dtype = np.float64 particles = make_normal_particle_array(queue, nparticles, dims, dtype) if do_plot: import matplotlib.pyplot as pt pt.plot(particles[0].get(), particles[1].get(), "x") from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(queue, nballs, dims, dtype) ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1) from boxtree.geo_lookup import LeavesToBallsLookupBuilder lblb = LeavesToBallsLookupBuilder(ctx) lbl, _ = lblb(queue, tree, ball_centers, ball_radii) # get data to host for test tree = tree.get() lbl = lbl.get() ball_centers = np.array([x.get() for x in ball_centers]).T ball_radii = ball_radii.get() from boxtree import box_flags_enum for ibox in xrange(tree.nboxes): # We only want leaves here. if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN: continue box_center = tree.box_centers[:, ibox] ext_l, ext_h = tree.get_box_extent(ibox) box_rad = 0.5*(ext_h-ext_l)[0] linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1) near_circles, = np.where(linf_circle_dists - ball_radii < box_rad) start, end = lbl.balls_near_box_starts[ibox:ibox+2] #print sorted(lbl.balls_near_box_lists[start:end]) #print sorted(near_circles) assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles) # }}} # You can test individual routines by typing # $ python test_tree.py 'test_routine(cl.create_some_context)' if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__]) # vim: fdm=marker