Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.tools import make_normal_particle_array
logger = logging.getLogger(__name__)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("nparticles", [9, 4096, 10**5])
def test_bounding_box(ctx_getter, dtype, dims, nparticles):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree.tools import AXIS_NAMES
from boxtree.bounding_box import BoundingBoxFinder
bbf = BoundingBoxFinder(ctx)
axis_names = AXIS_NAMES[:dims]
logger.info("%s - %s %s" % (dtype, dims, nparticles))
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
bbox_min = [np.min(x.get()) for x in particles]
bbox_max = [np.max(x.get()) for x in particles]
bbox_cl, evt = bbf(particles, radii=None)
bbox_cl = bbox_cl.get()
bbox_min_cl = np.empty(dims, dtype)
bbox_max_cl = np.empty(dims, dtype)
for i, ax in enumerate(axis_names):
bbox_min_cl[i] = bbox_cl["min_"+ax]
bbox_max_cl[i] = bbox_cl["max_"+ax]
assert (bbox_min == bbox_min_cl).all()
assert (bbox_max == bbox_max_cl).all()
# {{{ test basic (no source/target distinction) tree build
def run_build_test(builder, queue, dims, dtype, nparticles, do_plot,
max_particles_in_box=None, max_leaf_refine_weight=None,
refine_weights=None, **kwargs):
if dtype == np.float32:
tol = 1e-4
elif dtype == np.float64:
tol = 1e-12
else:
raise RuntimeError("unsupported dtype: %s" % dtype)
if (dtype == np.float32
and dims == 2
and queue.device.platform.name == "Portable Computing Language"):
pytest.xfail("2D float doesn't work on POCL")
if max_particles_in_box is not None:
logger.info("%dD %s - %d particles - max %d per box - %s" % (
dims, dtype.type.__name__, nparticles, max_particles_in_box,
" - ".join("%s: %s" % (k, v) for k, v in six.iteritems(kwargs))))
else:
logger.info("%dD %s - %d particles - max leaf weight %d - %s" % (
dims, dtype.type.__name__, nparticles, max_leaf_refine_weight,
" - ".join("%s: %s" % (k, v) for k, v in six.iteritems(kwargs))))
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
tree, _ = builder(queue, particles,
max_particles_in_box=max_particles_in_box,
refine_weights=refine_weights,
max_leaf_refine_weight=max_leaf_refine_weight,
debug=True, **kwargs)
tree = tree.get(queue=queue)
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.user_source_ids]).all()
if refine_weights is not None:
refine_weights_reordered = refine_weights.get()[tree.user_source_ids]
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
from boxtree import box_flags_enum as bfe
scaled_tol = tol*tree.root_extent
# Empty boxes exist in non-pruned trees--which themselves are undocumented.
# These boxes will fail these tests.
if not (tree.box_flags[ibox] & bfe.HAS_OWN_SRCNTGTS):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), (
ibox, extent_low, tree.bounding_box[0])
assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), (
ibox, extent_high, tree.bounding_box[1])
start = tree.box_source_starts[ibox]
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
box_particles = sorted_particles[:,
start:start+tree.box_source_counts_cumul[ibox]]
(box_particles < extent_high[:, np.newaxis] + scaled_tol)
(extent_low[:, np.newaxis] - scaled_tol <= box_particles)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
plotter.draw_box(ibox, edgecolor="red")
if not (tree.box_flags[ibox] & bfe.HAS_CHILDREN):
# Check that leaf particle density is as promised.
nparticles_in_box = tree.box_source_counts_cumul[ibox]
if max_particles_in_box is not None:
if nparticles_in_box > max_particles_in_box:
print("too many particles ({0} > {1}); box {2}".format(
nparticles_in_box, max_particles_in_box, ibox))
all_good_here = False
else:
assert refine_weights is not None
box_weight = np.sum(
refine_weights_reordered[start:start+nparticles_in_box])
if box_weight > max_leaf_refine_weight:
print("refine weight exceeded ({0} > {1}); box {2}".format(
box_weight, max_leaf_refine_weight, ibox))
all_good_here = False
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
def particle_tree_test_decorator(f):
f = pytest.mark.opencl(f)
f = pytest.mark.parametrize("dtype", [np.float64, np.float32])(f)
f = pytest.mark.parametrize("dims", [2, 3])(f)
return f
@particle_tree_test_decorator
def test_single_box_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims,
dtype, 4, max_particles_in_box=30, do_plot=do_plot)
@particle_tree_test_decorator
def test_two_level_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims,
dtype, 50, max_particles_in_box=30, do_plot=do_plot)
@particle_tree_test_decorator
def test_unpruned_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
# test unpruned tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot, max_particles_in_box=30, skip_prune=True)
@particle_tree_test_decorator
def test_particle_tree_with_reallocations(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
max_particles_in_box=30, do_plot=do_plot, nboxes_guess=5)
@particle_tree_test_decorator
def test_particle_tree_with_many_empty_leaves(
ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
max_particles_in_box=5, do_plot=do_plot)
@particle_tree_test_decorator
def test_vanilla_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**5,
max_particles_in_box=30, do_plot=do_plot)
@particle_tree_test_decorator
def test_explicit_refine_weights_particle_tree(ctx_getter, dtype, dims,
do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
nparticles = 10**5
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(ctx, seed=10)
refine_weights = rng.uniform(queue, nparticles, dtype=np.int32, a=1, b=10)
run_build_test(builder, queue, dims, dtype, nparticles,
refine_weights=refine_weights, max_leaf_refine_weight=100,
do_plot=do_plot)
Andreas Klöckner
committed
@particle_tree_test_decorator
def test_non_adaptive_particle_tree(ctx_getter, dtype, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
run_build_test(builder, queue, dims, dtype, 10**4,
max_particles_in_box=30, do_plot=do_plot, kind="non-adaptive")
# }}}
# {{{ source/target tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_source_target_tree(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
Andreas Klöckner
committed
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
Andreas Klöckner
committed
if do_plot:
import matplotlib.pyplot as pt
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
Andreas Klöckner
committed
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
Andreas Klöckner
committed
queue.finish()
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True)
tree = tree.get(queue=queue)
Andreas Klöckner
committed
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
Andreas Klöckner
committed
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
Andreas Klöckner
committed
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
Andreas Klöckner
committed
all_good_so_far = True
Andreas Klöckner
committed
if do_plot:
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
Andreas Klöckner
committed
tol = 1e-15
extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner
committed
assert (extent_low >=
tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <=
tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
Andreas Klöckner
committed
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
Andreas Klöckner
committed
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
for what, particles in [
src_start:src_start+tree.box_source_counts_cumul[ibox]]),
tgt_start:tgt_start+tree.box_target_counts_cumul[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis] + tol)
(extent_low[:, np.newaxis] - tol <= particles)
).all(axis=0)
Andreas Klöckner
committed
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
Andreas Klöckner
committed
plotter.draw_box(ibox, edgecolor="red")
pt.show()
Andreas Klöckner
committed
if not all_good_here:
Andreas Klöckner
committed
all_good_so_far = all_good_so_far and all_good_here
assert all_good_so_far
Andreas Klöckner
committed
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
Andreas Klöckner
committed
Andreas Klöckner
committed
# {{{ test sources/targets-with-extent tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
@pytest.mark.parametrize("extent_norm", ["linf", "l2"])
def test_extent_tree(ctx_getter, dims, extent_norm, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 100000
ntargets = 200000
dtype = np.float64
npoint_sources_per_source = 16
sources = make_normal_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(queue, ntargets, dims, dtype,
seed=19)
Andreas Klöckner
committed
refine_weights = cl.array.zeros(queue, nsources+ntargets, np.int32)
refine_weights[:nsources] = 1
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=13)
source_radii = 2**rng.uniform(queue, nsources, dtype=dtype,
a=-10, b=0)
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype,
a=-10, b=0)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
dev_tree, _ = tb(queue, sources, targets=targets,
Andreas Klöckner
committed
source_radii=source_radii,
target_radii=target_radii,
Andreas Klöckner
committed
refine_weights=refine_weights,
max_leaf_refine_weight=20,
#max_particles_in_box=10,
# Set artificially small, to exercise the reallocation code.
nboxes_guess=10,
debug=True,
stick_out_factor=0)
logger.info("transfer tree, check orderings")
tree = dev_tree.get(queue=queue)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.gca().set_aspect("equal", "datalim")
pt.show()
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
sorted_source_radii = tree.source_radii
sorted_target_radii = tree.target_radii
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
unsorted_source_radii = source_radii.get()
unsorted_target_radii = target_radii.get()
Andreas Klöckner
committed
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
assert (sorted_source_radii
== unsorted_source_radii[tree.user_source_ids]).all()
# {{{ test box structure, stick-out criterion
logger.info("test box structure, stick-out criterion")
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
if ntargets:
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
assert (sorted_target_radii
== unsorted_target_radii[user_target_ids]).all()
all_good_so_far = True
# {{{ check sources, targets
Andreas Klöckner
committed
assert np.sum(tree.box_source_counts_nonchild) == nsources
assert np.sum(tree.box_target_counts_nonchild) == ntargets
for ibox in range(tree.nboxes):
kid_sum = sum(
tree.box_target_counts_cumul[ichild_box]
for ichild_box in tree.box_child_ids[:, ibox]
if ichild_box != 0)
assert (
tree.box_target_counts_cumul[ibox]
==
tree.box_target_counts_nonchild[ibox]
+ kid_sum), ibox
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >=
tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <=
tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
del existing_children
del box_children
for ibox in range(tree.nboxes):
lev = int(tree.box_levels[ibox])
box_radius = 0.5 * tree.root_extent / (1 << lev)
box_center = tree.box_centers[:, ibox]
extent_low = box_center - box_radius
extent_high = box_center + box_radius
stick_out_dist = tree.stick_out_factor * box_radius
radius_with_stickout = (1 + tree.stick_out_factor) * box_radius
for what, starts, counts, points, radii in [
("source", tree.box_source_starts, tree.box_source_counts_cumul,
sorted_sources, sorted_source_radii),
("target", tree.box_target_starts, tree.box_target_counts_cumul,
sorted_targets, sorted_target_radii),
]:
bstart = starts[ibox]
bslice = slice(bstart, bstart+counts[ibox])
check_particles = points[:, bslice]
check_radii = radii[bslice]
if extent_norm == "linf":
good = (
(check_particles + check_radii
< extent_high[:, np.newaxis] + stick_out_dist)
&
(extent_low[:, np.newaxis] - stick_out_dist
<= check_particles - check_radii)
).all(axis=0)
elif extent_norm == "l2":
center_dists = np.sqrt(
np.sum(
(check_particles - box_center.reshape(-1, 1))**2,
axis=0))
good = (
(center_dists + check_radii)**2
< dims * radius_with_stickout**2)
else:
raise ValueError("unexpected value of extent_norm")
all_good_here = good.all()
if not all_good_here:
print("BAD BOX %s %d level %d"
% (what, ibox, tree.box_levels[ibox]))
all_good_so_far = all_good_so_far and all_good_here
assert all_good_here
# }}}
assert all_good_so_far
# }}}
# {{{ create, link point sources
logger.info("creating point sources")
np.random.seed(20)
from pytools.obj_array import make_obj_array
point_sources = make_obj_array([
cl.array.to_device(queue,
unsorted_sources[i][:, np.newaxis]
+ unsorted_source_radii[:, np.newaxis]
* np.random.uniform(
)
for i in range(dims)])
point_source_starts = cl.array.arange(queue,
0, (nsources+1)*npoint_sources_per_source, npoint_sources_per_source,
dtype=tree.particle_id_dtype)
from boxtree.tree import link_point_sources
dev_tree = link_point_sources(queue, dev_tree,
point_source_starts, point_sources,
debug=True)
# }}}
# }}}
# {{{ leaves to balls query test
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_leaves_to_balls_query(ctx_getter, dims, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.area_query import LeavesToBallsLookupBuilder
lblb = LeavesToBallsLookupBuilder(ctx)
lbl, _ = lblb(queue, tree, ball_centers, ball_radii)
tree = tree.get(queue=queue)
lbl = lbl.get(queue=queue)
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
assert len(lbl.balls_near_box_starts) == tree.nboxes + 1
from boxtree import box_flags_enum
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# {{{ area query test
def run_area_query_test(ctx, queue, tree, ball_centers, ball_radii):
"""
Performs an area query and checks that the result is as expected.
"""
from boxtree.area_query import AreaQueryBuilder
aqb = AreaQueryBuilder(ctx)
area_query, _ = aqb(queue, tree, ball_centers, ball_radii)
# Get data to host for test.
tree = tree.get(queue=queue)
area_query = area_query.get(queue=queue)
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
leaf_boxes, = (tree.box_flags & box_flags_enum.HAS_CHILDREN == 0).nonzero()
leaf_box_radii = np.empty(len(leaf_boxes))
leaf_box_centers = np.empty((len(leaf_boxes), dims))
for idx, leaf_box in enumerate(leaf_boxes):
box_center = tree.box_centers[:, leaf_box]
ext_l, ext_h = tree.get_box_extent(leaf_box)
leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
leaf_box_centers[idx] = box_center
for ball_nr, (ball_center, ball_radius) \
in enumerate(zip(ball_centers, ball_radii)):
linf_box_dists = np.max(np.abs(ball_center - leaf_box_centers), axis=-1)
near_leaves_indices, \
= np.where(linf_box_dists < ball_radius + leaf_box_radii)
near_leaves = leaf_boxes[near_leaves_indices]
start, end = area_query.leaves_near_ball_starts[ball_nr:ball_nr+2]
found = area_query.leaves_near_ball_lists[start:end]
actual = near_leaves
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
assert set(found) == set(actual), (found, actual)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query(ctx_getter, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
run_area_query_test(ctx, queue, tree, ball_centers, ball_radii)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_balls_outside_bbox(ctx_getter, dims, do_plot=False):
"""
The input to the area query includes balls whose centers are not within
the tree bounding box.
"""
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**4
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(ctx, seed=13)
bbox_min = tree.bounding_box[0].min()
bbox_max = tree.bounding_box[1].max()
from pytools.obj_array import make_obj_array
ball_centers = make_obj_array([
rng.uniform(queue, nballs, dtype=dtype, a=bbox_min-1, b=bbox_max+1)
for i in range(dims)])
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
run_area_query_test(ctx, queue, tree, ball_centers, ball_radii)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_elwise(ctx_getter, dims, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dtype = np.float64
particles = make_normal_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
ball_centers = make_normal_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
from boxtree.area_query import (
AreaQueryElementwiseTemplate, PeerListFinder)
template = AreaQueryElementwiseTemplate(
extra_args="""
coord_t *ball_radii,
%for ax in AXIS_NAMES[:dimensions]:
coord_t *ball_${ax},
%endfor
""",
ball_center_and_radius_expr="""
%for ax in AXIS_NAMES[:dimensions]:
${ball_center}.${ax} = ball_${ax}[${i}];
%endfor
${ball_radius} = ball_radii[${i}];
""",
leaf_found_op="")
peer_lists, evt = PeerListFinder(ctx)(queue, tree)
kernel = template.generate(
ctx,
dims,
tree.coord_dtype,
tree.box_id_dtype,
peer_lists.peer_list_starts.dtype,
tree.nlevels)
evt = kernel(
*template.unwrap_args(
tree, peer_lists, ball_radii, *ball_centers),
queue=queue,
wait_for=[evt],
cl.wait_for_events([evt])
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
# {{{ level restriction test
@pytest.mark.opencl
@pytest.mark.parametrize("lookbehind", [0, 1])
@pytest.mark.parametrize("skip_prune", [True, False])
@pytest.mark.parametrize("dims", [2, 3])
def test_level_restriction(ctx_getter, dims, skip_prune, lookbehind, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nparticles = 10**5
dtype = np.float64
from boxtree.tools import make_surface_particle_array
particles = make_surface_particle_array(queue, nparticles, dims, dtype, seed=15)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree_dev, _ = tb(queue, particles, kind="adaptive-level-restricted",
max_particles_in_box=30, debug=True,
skip_prune=skip_prune, lr_lookbehind=lookbehind,
# Artificially low to exercise reallocation code
nboxes_guess=10)
def find_neighbors(leaf_box_centers, leaf_box_radii):
# We use an area query with a ball that is slightly larger than
# the size of a leaf box to find the neighboring leaves.
#
# Note that since this comes from an area query, the self box will be
# included in the neighbor list.
from boxtree.area_query import AreaQueryBuilder
aqb = AreaQueryBuilder(ctx)
ball_radii = cl.array.to_device(queue,
np.min(leaf_box_radii) / 2 + leaf_box_radii)
leaf_box_centers = [
cl.array.to_device(queue, axis) for axis in leaf_box_centers]
area_query, _ = aqb(queue, tree_dev, leaf_box_centers, ball_radii)
area_query = area_query.get(queue=queue)
return (area_query.leaves_near_ball_starts,
area_query.leaves_near_ball_lists)
# Get data to host for test.
tree = tree_dev.get(queue=queue)
# Find leaf boxes.
from boxtree import box_flags_enum
leaf_boxes, = (tree.box_flags & box_flags_enum.HAS_CHILDREN == 0).nonzero()
leaf_box_radii = np.empty(len(leaf_boxes))
leaf_box_centers = np.empty((dims, len(leaf_boxes)))
for idx, leaf_box in enumerate(leaf_boxes):
box_center = tree.box_centers[:, leaf_box]
ext_l, ext_h = tree.get_box_extent(leaf_box)
leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
leaf_box_centers[:, idx] = box_center
neighbor_starts, neighbor_and_self_lists = find_neighbors(
leaf_box_centers, leaf_box_radii)
# Check level restriction.
for leaf_idx, leaf in enumerate(leaf_boxes):
neighbors = neighbor_and_self_lists[
neighbor_starts[leaf_idx]:neighbor_starts[leaf_idx+1]]
neighbor_levels = np.array(tree.box_levels[neighbors], dtype=int)
leaf_level = int(tree.box_levels[leaf])
assert (np.abs(neighbor_levels - leaf_level) <= 1).all(), \
(neighbor_levels, leaf_level)
# }}}
# {{{ space invader query test
@pytest.mark.opencl
@pytest.mark.geo_lookup
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("dims", [2, 3])
def test_space_invader_query(ctx_getter, dims, dtype, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
if (dtype == np.float32