Skip to content
Snippets Groups Projects
test_grudge.py 36.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • from __future__ import division, absolute_import, print_function
    
    __copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    import numpy as np
    import numpy.linalg as la
    
    import pyopencl as cl
    
    from meshmode.array_context import PyOpenCLArrayContext
    from meshmode.dof_array import unflatten, flatten, flat_norm
    
    from pytools.obj_array import flat_obj_array, make_obj_array
    
    from grudge import sym, bind, DGDiscretizationWithBoundaries
    
    from pyopencl.tools import (  # noqa
    
            pytest_generate_tests_for_pyopencl
            as pytest_generate_tests)
    
    
    import logging
    
    logger = logging.getLogger(__name__)
    
    logging.basicConfig(level=logging.INFO)
    
    # {{{ inverse metric
    
    
    def test_inverse_metric(ctx_factory, dim):
    
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
    
        mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
                n=(6,)*dim, order=4)
    
    
        def m(x):
            result = np.empty_like(x)
            result[0] = (
                    1.5*x[0] + np.cos(x[0])
                    + 0.1*np.sin(10*x[1]))
            result[1] = (
                    0.05*np.cos(10*x[0])
                    + 1.3*x[1] + np.sin(x[1]))
            if len(x) == 3:
                result[2] = x[2]
            return result
    
        from meshmode.mesh.processing import map_mesh
        mesh = map_mesh(mesh, m)
    
    
        discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
    
    
        sym_op = (
                sym.forward_metric_derivative_mat(mesh.dim)
                .dot(
                    sym.inverse_metric_derivative_mat(mesh.dim)
                    )
                .reshape(-1))
    
        op = bind(discr, sym_op)
    
        mat = op(actx).reshape(mesh.dim, mesh.dim)
    
    
        for i in range(mesh.dim):
            for j in range(mesh.dim):
                tgt = 1 if i == j else 0
    
    
                err = flat_norm(mat[i, j] - tgt, np.inf)
    
                logger.info("error[%d, %d]: %.5e", i, j, err)
                assert err < 1.0e-12, (i, j, err)
    
    # }}}
    
    
    # {{{ mass operator trig integration
    
    @pytest.mark.parametrize("ambient_dim", [1, 2, 3])
    @pytest.mark.parametrize("quad_tag", [sym.QTAG_NONE, "OVSMP"])
    
    def test_mass_mat_trig(ctx_factory, ambient_dim, quad_tag):
    
        """Check the integral of some trig functions on an interval using the mass
    
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
        nelements = 17
        order = 4
    
        a = -4.0 * np.pi
        b = +9.0 * np.pi
        true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
    
        from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
        dd_quad = sym.DOFDesc(sym.DTAG_VOLUME_ALL, quad_tag)
        if quad_tag is sym.QTAG_NONE:
            quad_tag_to_group_factory = {}
        else:
            quad_tag_to_group_factory = {
                    quad_tag: QuadratureSimplexGroupFactory(order=2*order)
                    }
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(
                a=(a,)*ambient_dim, b=(b,)*ambient_dim,
                n=(nelements,)*ambient_dim, order=1)
    
        discr = DGDiscretizationWithBoundaries(actx, mesh, order=order,
    
                quad_tag_to_group_factory=quad_tag_to_group_factory)
    
        def _get_variables_on(dd):
            sym_f = sym.var("f", dd=dd)
            sym_x = sym.nodes(ambient_dim, dd=dd)
            sym_ones = sym.Ones(dd)
    
            return sym_f, sym_x, sym_ones
    
        sym_f, sym_x, sym_ones = _get_variables_on(sym.DD_VOLUME)
    
        f_volm = actx.to_numpy(flatten(bind(discr, sym.cos(sym_x[0])**2)(actx)))
        ones_volm = actx.to_numpy(flatten(bind(discr, sym_ones)(actx)))
    
    
        sym_f, sym_x, sym_ones = _get_variables_on(dd_quad)
    
        f_quad = bind(discr, sym.cos(sym_x[0])**2)(actx)
        ones_quad = bind(discr, sym_ones)(actx)
    
    
        mass_op = bind(discr, sym.MassOperator(dd_quad, sym.DD_VOLUME)(sym_f))
    
    
        num_integral_1 = np.dot(ones_volm, actx.to_numpy(flatten(mass_op(f=f_quad))))
    
        err_1 = abs(num_integral_1 - true_integral)
    
        num_integral_2 = np.dot(f_volm, actx.to_numpy(flatten(mass_op(f=ones_quad))))
    
        err_2 = abs(num_integral_2 - true_integral)
    
        assert err_2 < 1.0e-9, err_2
    
    
        if quad_tag is sym.QTAG_NONE:
            # NOTE: `integral` always makes a square mass matrix and
            # `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
            num_integral_3 = bind(discr,
    
                    sym.integral(sym_f, dd=dd_quad))(f=f_quad)
    
            err_3 = abs(num_integral_3 - true_integral)
            assert err_3 < 5.0e-10, err_3
    
    # }}}
    
    
    # {{{ mass operator surface area
    
    def _ellipse_surface_area(radius, aspect_ratio):
        # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
        eccentricity = 1.0 - (1/aspect_ratio)**2
    
        if abs(aspect_ratio - 2.0) < 1.0e-14:
            # NOTE: hardcoded value so we don't need scipy for the test
            ellip_e = 1.2110560275684594
        else:
            from scipy.special import ellipe
            ellip_e = ellipe(eccentricity)
    
        return 4.0 * radius * ellip_e
    
    
    def _spheroid_surface_area(radius, aspect_ratio):
        # https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
        a = 1.0
        c = aspect_ratio
    
        if a < c:
            e = np.sqrt(1.0 - (a/c)**2)
            return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
        else:
            e = np.sqrt(1.0 - (c/a)**2)
            return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))
    
    
    @pytest.mark.parametrize("name", [
        "2-1-ellipse", "spheroid", "box2d", "box3d"
        ])
    def test_mass_surface_area(ctx_factory, name):
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        # {{{ cases
    
        if name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
            surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio)
        elif name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
            surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio)
        elif name == "box2d":
            from mesh_data import BoxMeshBuilder
            builder = BoxMeshBuilder(ambient_dim=2)
            surface_area = 1.0
        elif name == "box3d":
            from mesh_data import BoxMeshBuilder
            builder = BoxMeshBuilder(ambient_dim=3)
            surface_area = 1.0
        else:
            raise ValueError("unknown geometry name: %s" % name)
    
        # }}}
    
        # {{{ convergence
    
        from pytools.convergence import EOCRecorder
        eoc = EOCRecorder()
    
        for resolution in builder.resolutions:
            mesh = builder.get_mesh(resolution, builder.mesh_order)
    
            discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
    
            volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
    
    
            logger.info("ndofs:     %d", volume_discr.ndofs)
    
            logger.info("nelements: %d", volume_discr.mesh.nelements)
    
            # {{{ compute surface area
    
            dd = sym.DD_VOLUME
            sym_op = sym.NodalSum(dd)(sym.MassOperator(dd, dd)(sym.Ones(dd)))
    
            approx_surface_area = bind(discr, sym_op)(actx)
    
    
            logger.info("surface: got {:.5e} / expected {:.5e}".format(
                approx_surface_area, surface_area))
            area_error = abs(approx_surface_area - surface_area) / abs(surface_area)
    
            # }}}
    
    
            h_max = bind(discr, sym.h_max_from_volume(
    
                discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
    
            eoc.add_data_point(h_max, area_error)
    
        # }}}
    
        logger.info("surface area error\n%s", str(eoc))
    
        assert eoc.max_error() < 1.0e-14 \
    
                or eoc.order_estimate() > builder.order
    
    # }}}
    
    
    # {{{ surface mass inverse
    
    
    @pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"])
    def test_surface_mass_operator_inverse(ctx_factory, name):
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        # {{{ cases
    
        if name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        elif name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
        else:
            raise ValueError("unknown geometry name: %s" % name)
    
        # }}}
    
        # {{{ convergence
    
        from pytools.convergence import EOCRecorder
        eoc = EOCRecorder()
    
        for resolution in builder.resolutions:
            mesh = builder.get_mesh(resolution, builder.mesh_order)
    
            discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
    
            volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
    
    
            logger.info("ndofs:     %d", volume_discr.ndofs)
    
            logger.info("nelements: %d", volume_discr.mesh.nelements)
    
            # {{{ compute inverse mass
    
            dd = sym.DD_VOLUME
            sym_f = sym.cos(4.0 * sym.nodes(mesh.ambient_dim, dd)[0])
            sym_op = sym.InverseMassOperator(dd, dd)(
                    sym.MassOperator(dd, dd)(sym.var("f")))
    
    
            f = bind(discr, sym_f)(actx)
            f_inv = bind(discr, sym_op)(actx, f=f)
    
            inv_error = bind(discr,
                    sym.norm(2, sym.var("x") - sym.var("y"))
                    / sym.norm(2, sym.var("y")))(actx, x=f_inv, y=f)
    
            h_max = bind(discr, sym.h_max_from_volume(
    
                discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
    
            eoc.add_data_point(h_max, inv_error)
    
        # }}}
    
        logger.info("inverse mass error\n%s", str(eoc))
    
        assert eoc.max_error() < 5.0e-09 \
    
                or eoc.order_estimate() > builder.order
    
    # }}}
    
    
    # {{{ surface face normal orthogonality
    
    
    def _avg_face_normal(x, side=-1):
        x_i = x
        x_e = sym.OppositeInteriorFaceSwap()(x_i)
        x_avg = (x_i + side * x_e) / 2.0
    
        return x_avg / sym.sqrt(x_avg.dot(x_avg))
    
    
    
    @pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
    def test_face_normal_surface(ctx_factory, mesh_name):
        """Check that face normals are orthogonal to the surface normal"""
    
        cl_ctx = ctx_factory()
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        # {{{ geometry
    
        if mesh_name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        elif mesh_name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
        else:
            raise ValueError("unknown mesh name: %s" % mesh_name)
    
    
        mesh = builder.get_mesh(builder.resolutions[0], builder.mesh_order)
    
        discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
    
        volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
    
        logger.info("ndofs:    %d", volume_discr.ndofs)
    
        logger.info("nelements: %d", volume_discr.mesh.nelements)
    
    
        # }}}
    
        # {{{ symbolic
    
        dv = sym.DD_VOLUME
        df = sym.as_dofdesc(sym.FACE_RESTR_INTERIOR)
    
        ambient_dim = mesh.ambient_dim
    
        sym_surf_normal = sym.project(dv, df)(
    
                sym.surface_normal(ambient_dim, dim=dim, dd=dv).as_vector()
    
                )
        sym_surf_normal = sym_surf_normal / sym.sqrt(sum(sym_surf_normal**2))
    
    
        sym_surf_normal_avg = _avg_face_normal(sym_surf_normal, side=1.0)
    
        sym_face_normal_i = sym.normal(df, ambient_dim, dim=dim - 1)
    
        sym_face_normal_e = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_i)
    
    
        sym_face_normal_avg = _avg_face_normal(sym_face_normal_i)
    
        sym_face_normal_op = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_avg)
    
        if mesh.ambient_dim == 3:
            # NOTE: there's only one face tangent in 3d
    
            sym_face_tangent = (
                    sym.pseudoscalar(ambient_dim, dim - 1, dd=df)
                    / sym.area_element(ambient_dim, dim - 1, dd=df)).as_vector()
    
        def _eval_error(x):
            return bind(discr, sym.norm(np.inf, sym.var("x", dd=df), dd=df))(actx, x=x)
    
    
        surf_normal = bind(discr, sym_surf_normal)(actx)
        surf_normal_avg = bind(discr, sym_surf_normal_avg)(actx)
    
        face_normal_i = bind(discr, sym_face_normal_i)(actx)
        face_normal_e = bind(discr, sym_face_normal_e)(actx)
    
        face_normal_avg = bind(discr, sym_face_normal_avg)(actx)
        face_normal_op = bind(discr, sym_face_normal_op)(actx)
    
    
        # check interpolated surface normal is orthogonal to face normal
    
        error = _eval_error(surf_normal.dot(face_normal_i))
    
        logger.info("error[n_dot_i]:    %.5e", error)
        assert error < rtol
    
    
        # check averaged ones are also orthogonal
    
        error = _eval_error(surf_normal_avg.dot(face_normal_avg))
    
        logger.info("error[a_dot_a]:    %.5e", error)
        assert error < rtol
    
        # check averaged face normal and interpolated face normal
    
        error = _eval_error(surf_normal.dot(face_normal_avg))
    
        logger.info("error[n_dot_a]:    %.5e", error)
        assert error > rtol
    
    
        # check angle between two neighboring elements
    
        error = _eval_error(face_normal_i.dot(face_normal_e) + 1.0)
    
        logger.info("error[i_dot_e]:    %.5e", error)
        assert error > rtol
    
        # check uniqueness of normal on the two sides
    
        face_normal_sum = face_normal_avg + face_normal_op
        error = _eval_error(face_normal_sum.dot(face_normal_sum))
    
        logger.info("error[a_plus_o]:   %.5e", error)
        assert error < rtol
    
        # check orthogonality with face tangent
        if ambient_dim == 3:
    
            face_tangent = bind(discr, sym_face_tangent)(actx)
    
            error = _eval_error(face_tangent.dot(face_normal_avg))
    
            logger.info("error[t_dot_avg]:  %.5e", error)
            assert error < 5 * rtol
    
        # }}}
    
    # }}}
    
    
    # {{{ diff operator
    
    @pytest.mark.parametrize("dim", [1, 2, 3])
    
    def test_tri_diff_mat(ctx_factory, dim, order=4):
    
        """Check differentiation matrix along the coordinate axes on a disk
    
        Uses sines as the function to differentiate.
        """
    
    
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
    
        from pytools.convergence import EOCRecorder
        axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
    
    
        for n in [4, 8, 16]:
    
            mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
                    n=(n,)*dim, order=4)
    
    
            discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
    
            nabla = sym.nabla(dim)
    
            for axis in range(dim):
                x = sym.nodes(dim)
    
    
                f = bind(discr, sym.sin(3*x[axis]))(actx)
                df = bind(discr, 3*sym.cos(3*x[axis]))(actx)
    
                sym_op = nabla[axis](sym.var("f"))
    
                bound_op = bind(discr, sym_op)
    
                df_num = bound_op(f=f)
    
                linf_error = flat_norm(df_num-df, np.Inf)
    
                axis_eoc_recs[axis].add_data_point(1/n, linf_error)
    
        for axis, eoc_rec in enumerate(axis_eoc_recs):
    
            logger.info("axis %d\n%s", axis, eoc_rec)
    
            assert eoc_rec.order_estimate() > order
    
    # }}}
    
    
    # {{{ divergence theorem
    
    def test_2d_gauss_theorem(ctx_factory):
        """Verify Gauss's theorem explicitly on a mesh"""
    
    
        pytest.importorskip("meshpy")
    
    
        from meshpy.geometry import make_circle, GeometryBuilder
        from meshpy.triangle import MeshInfo, build
    
        geob = GeometryBuilder()
        geob.add_geometry(*make_circle(1))
        mesh_info = MeshInfo()
        geob.set(mesh_info)
    
        mesh_info = build(mesh_info)
    
        from meshmode.mesh.io import from_meshpy
        mesh = from_meshpy(mesh_info, order=1)
    
    
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
        discr = DGDiscretizationWithBoundaries(actx, mesh, order=2)
    
                    sym.sin(3*x[0])+sym.cos(3*x[1]),
                    sym.sin(2*x[0])+sym.cos(x[1]))
    
        gauss_err = bind(discr,
                sym.integral((
                    sym.nabla(2) * f(sym.nodes(2))
                    ).sum())
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                -  # noqa: W504
    
                sym.integral(
    
                    sym.project("vol", sym.BTAG_ALL)(f(sym.nodes(2)))
    
                    .dot(sym.normal(sym.BTAG_ALL, 2)),
                    dd=sym.BTAG_ALL)
    
        assert abs(gauss_err) < 1e-13
    
    
    @pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
    def test_surface_divergence_theorem(ctx_factory, mesh_name, visualize=False):
        r"""Check the surface divergence theorem.
    
            .. math::
    
                \int_Sigma \phi \nabla_i f_i =
                \int_\Sigma \nabla_i \phi f_i +
                \int_\Sigma \kappa \phi f_i n_i +
                \int_{\partial \Sigma} \phi f_i m_i
    
            where :math:`n_i` is the surface normal and :class:`m_i` is the
            face normal (which should be orthogonal to both the surface normal
            and the face tangent).
        """
    
        cl_ctx = ctx_factory()
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        # {{{ cases
    
        if mesh_name == "2-1-ellipse":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        elif mesh_name == "spheroid":
            from mesh_data import SpheroidMeshBuilder
            builder = SpheroidMeshBuilder()
        elif mesh_name == "circle":
            from mesh_data import EllipseMeshBuilder
            builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
        elif mesh_name == "starfish":
            from mesh_data import StarfishMeshBuilder
            builder = StarfishMeshBuilder()
        elif mesh_name == "sphere":
            from mesh_data import SphereMeshBuilder
            builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
        else:
            raise ValueError("unknown mesh name: %s" % mesh_name)
    
        # }}}
    
        # {{{ convergene
    
        def f(x):
    
            return flat_obj_array(
    
                    sym.sin(3*x[1]) + sym.cos(3*x[0]) + 1.0,
                    sym.sin(2*x[0]) + sym.cos(x[1]),
                    3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]),
                    )[:ambient_dim]
    
        from pytools.convergence import EOCRecorder
        eoc_global = EOCRecorder()
        eoc_local = EOCRecorder()
    
        theta = np.pi / 3.33
        ambient_dim = builder.ambient_dim
        if ambient_dim == 2:
            mesh_rotation = np.array([
                [np.cos(theta), -np.sin(theta)],
                [np.sin(theta), np.cos(theta)],
                ])
        else:
            mesh_rotation = np.array([
                [1.0, 0.0, 0.0],
                [0.0, np.cos(theta), -np.sin(theta)],
                [0.0, np.sin(theta), np.cos(theta)],
                ])
    
        mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]
    
        for i, resolution in enumerate(builder.resolutions):
            from meshmode.mesh.processing import affine_map
            mesh = builder.get_mesh(resolution, builder.mesh_order)
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
            mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset)
    
    
            from meshmode.discretization.poly_element import \
                    QuadratureSimplexGroupFactory
    
            discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order,
    
                    quad_tag_to_group_factory={
                        "product": QuadratureSimplexGroupFactory(2 * builder.order)
                        })
    
            volume = discr.discr_from_dd(sym.DD_VOLUME)
    
            logger.info("ndofs:     %d", volume.ndofs)
    
            logger.info("nelements: %d", volume.mesh.nelements)
    
            dd = sym.DD_VOLUME
            dq = dd.with_qtag("product")
            df = sym.as_dofdesc(sym.FACE_RESTR_ALL)
            ambient_dim = discr.ambient_dim
            dim = discr.dim
    
            # variables
            sym_f = f(sym.nodes(ambient_dim, dd=dd))
            sym_f_quad = f(sym.nodes(ambient_dim, dd=dq))
            sym_kappa = sym.summed_curvature(ambient_dim, dim=dim, dd=dq)
            sym_normal = sym.surface_normal(ambient_dim, dim=dim, dd=dq).as_vector()
    
            sym_face_normal = sym.normal(df, ambient_dim, dim=dim - 1)
    
            sym_face_f = sym.project(dd, df)(sym_f)
    
    
            # operators
            sym_stiff = sum(
                    sym.StiffnessOperator(d)(f) for d, f in enumerate(sym_f)
                    )
            sym_stiff_t = sum(
                    sym.StiffnessTOperator(d)(f) for d, f in enumerate(sym_f)
                    )
            sym_k = sym.MassOperator(dq, dd)(sym_kappa * sym_f_quad.dot(sym_normal))
            sym_flux = sym.FaceMassOperator()(sym_face_f.dot(sym_face_normal))
    
    
            # sum everything up
    
            sym_op_global = sym.NodalSum(dd)(
                    sym_stiff - (sym_stiff_t + sym_k))
            sym_op_local = sym.ElementwiseSumOperator(dd)(
                    sym_stiff - (sym_stiff_t + sym_k + sym_flux))
    
    
            # evaluate
            op_global = bind(discr, sym_op_global)(actx)
            op_local = bind(discr, sym_op_local)(actx)
    
            err_global = abs(op_global)
            err_local = bind(discr, sym.norm(np.inf, sym.var("x")))(actx, x=op_local)
    
            logger.info("errors: global %.5e local %.5e", err_global, err_local)
    
            # compute max element size
    
            h_max = bind(discr, sym.h_max_from_volume(
    
                discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
    
            eoc_global.add_data_point(h_max, err_global)
            eoc_local.add_data_point(h_max, err_local)
    
            if visualize:
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
                from grudge.shortcuts import make_visualizer
                vis = make_visualizer(discr, vis_order=builder.order)
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
                filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu"
    
                vis.write_vtk_file(filename, [
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
                    ("r", actx.np.log10(op_local))
                    ], overwrite=True)
    
    
        # }}}
    
        order = min(builder.order, builder.mesh_order) - 0.5
        logger.info("\n%s", str(eoc_global))
        logger.info("\n%s", str(eoc_local))
    
        assert eoc_global.max_error() < 1.0e-12 \
    
                or eoc_global.order_estimate() > order - 0.5
    
    
        assert eoc_local.max_error() < 1.0e-12 \
    
                or eoc_local.order_estimate() > order - 0.5
    
    # }}}
    
    
    # {{{ models: advection
    
    @pytest.mark.parametrize(("mesh_name", "mesh_pars"), [
    
        ("segment", [8, 16, 32]),
    
        ("disk", [0.1, 0.05]),
        ("rect2", [4, 8]),
        ("rect3", [4, 6]),
        ])
    
    @pytest.mark.parametrize("op_type", ["strong", "weak"])
    
    @pytest.mark.parametrize("flux_type", ["central"])
    
    @pytest.mark.parametrize("order", [3, 4, 5])
    
    # test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)'
    
    def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type,
            order, visualize=False):
    
        """Test whether 2D advection actually converges"""
    
    
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        from pytools.convergence import EOCRecorder
        eoc_rec = EOCRecorder()
    
        for mesh_par in mesh_pars:
    
            if mesh_name == "segment":
                from meshmode.mesh.generation import generate_box_mesh
                mesh = generate_box_mesh(
                    [np.linspace(-1.0, 1.0, mesh_par)],
                    order=order)
    
                dim = 1
                dt_factor = 1.0
            elif mesh_name == "disk":
    
                pytest.importorskip("meshpy")
    
                from meshpy.geometry import make_circle, GeometryBuilder
                from meshpy.triangle import MeshInfo, build
    
                geob = GeometryBuilder()
                geob.add_geometry(*make_circle(1))
                mesh_info = MeshInfo()
                geob.set(mesh_info)
    
                mesh_info = build(mesh_info, max_volume=mesh_par)
    
                from meshmode.mesh.io import from_meshpy
                mesh = from_meshpy(mesh_info, order=1)
                dim = 2
                dt_factor = 4
            elif mesh_name.startswith("rect"):
                dim = int(mesh_name[4:])
                from meshmode.mesh.generation import generate_regular_rect_mesh
                mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
                        n=(mesh_par,)*dim, order=4)
    
                if dim == 2:
                    dt_factor = 4
                elif dim == 3:
                    dt_factor = 2
                else:
                    raise ValueError("dt_factor not known for %dd" % dim)
            else:
                raise ValueError("invalid mesh name: " + mesh_name)
    
            v = np.array([0.27, 0.31, 0.1])[:dim]
            norm_v = la.norm(v)
    
            def f(x):
                return sym.sin(10*x)
    
            def u_analytic(x):
                return f(
                        -v.dot(x)/norm_v
                        + sym.var("t", sym.DD_SCALAR)*norm_v)
    
    
            from grudge.models.advection import (
                    StrongAdvectionOperator, WeakAdvectionOperator)
    
            discr = DGDiscretizationWithBoundaries(actx, mesh, order=order)
    
            op_class = {
                    "strong": StrongAdvectionOperator,
                    "weak": WeakAdvectionOperator,
                    }[op_type]
            op = op_class(v,
    
                    inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
                    flux_type=flux_type)
    
            bound_op = bind(discr, op.sym_operator())
    
    
            u = bind(discr, u_analytic(sym.nodes(dim)))(actx, t=0)
    
                return bound_op(t=t, u=u)
    
    
            if dim == 3:
                final_time = 0.1
            else:
                final_time = 0.2
    
    
            h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim))(actx)
    
            dt = dt_factor * h_max/order**2
    
            nsteps = (final_time // dt) + 1
            dt = final_time/nsteps + 1e-15
    
            from grudge.shortcuts import set_up_rk4
            dt_stepper = set_up_rk4("u", dt, u, rhs)
    
            last_u = None
    
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(discr, vis_order=order)
    
            step = 0
    
            for event in dt_stepper.run(t_end=final_time):
                if isinstance(event, dt_stepper.StateComputed):
                    step += 1
    
                    logger.debug("[%04d] t = %.5f", step, event.t)
    
    
                    last_t = event.t
                    last_u = event.state_component
    
                    if visualize:
    
                        vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step),
    
                                [("u", event.state_component)])
    
            error_l2 = bind(discr,
                sym.norm(2, sym.var("u")-u_analytic(sym.nodes(dim))))(
    
                    t=last_t, u=last_u)
    
            logger.info("h_max %.5e error %.5e", h_max, error_l2)
    
            eoc_rec.add_data_point(h_max, error_l2)
    
        logger.info("\n%s", eoc_rec.pretty_print(
    
            abscissa_label="h",
            error_label="L2 Error"))
    
        assert eoc_rec.order_estimate() > order
    
    # }}}
    
    
    # {{{ models: maxwell
    
    @pytest.mark.parametrize("order", [3, 4, 5])
    
    def test_convergence_maxwell(ctx_factory,  order):
    
        """Test whether 3D Maxwell's actually converges"""
    
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        from pytools.convergence import EOCRecorder
        eoc_rec = EOCRecorder()
    
        dims = 3
        ns = [4, 6, 8]
        for n in ns:
            from meshmode.mesh.generation import generate_regular_rect_mesh
            mesh = generate_regular_rect_mesh(
                    a=(0.0,)*dims,
                    b=(1.0,)*dims,
                    n=(n,)*dims)
    
    
            discr = DGDiscretizationWithBoundaries(actx, mesh, order=order)
    
    
            epsilon = 1
            mu = 1
    
            from grudge.models.em import get_rectangular_cavity_mode
            sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
    
            analytic_sol = bind(discr, sym_mode)
    
            fields = analytic_sol(actx, t=0, epsilon=epsilon, mu=mu)
    
    
            from grudge.models.em import MaxwellOperator
            op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims)
            op.check_bc_coverage(mesh)
            bound_op = bind(discr, op.sym_operator())
    
            def rhs(t, w):
    
                return bound_op(t=t, w=w)
    
    
            dt = 0.002
            final_t = dt * 5
            nsteps = int(final_t/dt)
    
            from grudge.shortcuts import set_up_rk4
            dt_stepper = set_up_rk4("w", dt, fields, rhs)
    
    
            logger.info("dt %.5e nsteps %5d", dt, nsteps)
    
    
            norm = bind(discr, sym.norm(2, sym.var("u")))
    
            step = 0
            for event in dt_stepper.run(t_end=final_t):
                if isinstance(event, dt_stepper.StateComputed):
                    assert event.component_id == "w"
                    esc = event.state_component
    
                    step += 1
    
                    logger.debug("[%04d] t = %.5e", step, event.t)
    
            sol = analytic_sol(actx, mu=mu, epsilon=epsilon, t=step * dt)
            vals = [norm(u=(esc[i] - sol[i])) / norm(u=sol[i]) for i in range(5)] # noqa E501
    
            total_error = sum(vals)
            eoc_rec.add_data_point(1.0/n, total_error)
    
    
        logger.info("\n%s", eoc_rec.pretty_print(
            abscissa_label="h",
            error_label="L2 Error"))
    
    
        assert eoc_rec.order_estimate() > order
    
    
    # }}}
    
    
    # {{{ models: variable coefficient advection oversampling
    
    @pytest.mark.parametrize("order", [2, 3, 4])
    def test_improvement_quadrature(ctx_factory, order):
        """Test whether quadrature improves things and converges"""
        from meshmode.mesh.generation import generate_regular_rect_mesh
        from grudge.models.advection import VariableCoefficientAdvectionOperator
        from pytools.convergence import EOCRecorder
    
        from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
    
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(queue)
    
    
        dims = 2
        sym_nds = sym.nodes(dims)
    
        advec_v = flat_obj_array(-1*sym_nds[1], sym_nds[0])
    
    
        flux = "upwind"
    
        op = VariableCoefficientAdvectionOperator(advec_v, 0, flux_type=flux)
    
    
        def gaussian_mode():
            source_width = 0.1
            sym_x = sym.nodes(2)
            return sym.exp(-np.dot(sym_x, sym_x) / source_width**2)
    
    
        def conv_test(descr, use_quad):
    
            logger.info("-" * 75)
            logger.info(descr)
            logger.info("-" * 75)
    
            eoc_rec = EOCRecorder()
    
            ns = [20, 25]
            for n in ns:
                mesh = generate_regular_rect_mesh(
                    a=(-0.5,)*dims,
                    b=(0.5,)*dims,
                    n=(n,)*dims,
                    order=order)
    
    
                if use_quad:
                    quad_tag_to_group_factory = {
                        "product": QuadratureSimplexGroupFactory(order=4*order)
                        }
                else:
                    quad_tag_to_group_factory = {"product": None}
    
    
                discr = DGDiscretizationWithBoundaries(actx, mesh, order=order,
    
                        quad_tag_to_group_factory=quad_tag_to_group_factory)
    
                bound_op = bind(discr, op.sym_operator())
    
                fields = bind(discr, gaussian_mode())(actx, t=0)
    
                norm = bind(discr, sym.norm(2, sym.var("u")))
    
    
                esc = bound_op(u=fields)
                total_error = norm(u=esc)
    
                eoc_rec.add_data_point(1.0/n, total_error)
    
    
            logger.info("\n%s", eoc_rec.pretty_print(
                abscissa_label="h",
                error_label="L2 Error"))
    
    
            return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history])
    
    
        eoc, errs = conv_test("no quadrature", False)
        q_eoc, q_errs = conv_test("with quadrature", True)
    
        assert q_eoc > eoc
        assert (q_errs < errs).all()
        assert q_eoc > order
    
    
    # }}}
    
    
    # {{{ operator collector determinism
    
    Matt Wala's avatar
    Matt Wala committed
    def test_op_collector_order_determinism():
        class TestOperator(sym.Operator):
    
            def __init__(self):
                sym.Operator.__init__(self, sym.DD_VOLUME, sym.DD_VOLUME)
    
            mapper_method = "map_test_operator"
    
        from grudge.symbolic.mappers import BoundOperatorCollector
    
        class TestBoundOperatorCollector(BoundOperatorCollector):