Newer
Older
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from arraycontext import pytest_generate_tests_for_array_contexts
from boxtree.array_context import _acf # noqa: F401
from boxtree.array_context import PytestPyOpenCLArrayContextFactory
from boxtree.tools import make_normal_particle_array
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts([
PytestPyOpenCLArrayContextFactory,
])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("nparticles", [9, 4096, 10**5])
def test_bounding_box(actx_factory, dtype, dims, nparticles):
actx = actx_factory()
from boxtree.bounding_box import BoundingBoxFinder
bbf = BoundingBoxFinder(actx.context)
axis_names = AXIS_NAMES[:dims]
logger.info("%s - %s %s", dtype, dims, nparticles)
particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
bbox_min = [np.min(actx.to_numpy(x)) for x in particles]
bbox_max = [np.max(actx.to_numpy(x)) for x in particles]
bbox_cl, evt = bbf(particles, radii=None)
bbox_min_cl = np.empty(dims, dtype)
bbox_max_cl = np.empty(dims, dtype)
for i, ax in enumerate(axis_names):
bbox_min_cl[i] = bbox_cl[f"min_{ax}"]
bbox_max_cl[i] = bbox_cl[f"max_{ax}"]
assert np.all(bbox_min == bbox_min_cl)
assert np.all(bbox_max == bbox_max_cl)
# {{{ test basic (no source/target distinction) tree build
def run_build_test(builder, actx, dims, dtype, nparticles, visualize,
max_particles_in_box=None, max_leaf_refine_weight=None,
refine_weights=None, **kwargs):
if dtype == np.float32:
tol = 1e-4
elif dtype == np.float64:
tol = 1e-12
else:
raise RuntimeError("unsupported dtype: %s" % dtype)
if max_particles_in_box is not None:
logger.info("%dD %s - %d particles - max %d per box - %s",
dims, dtype.type.__name__, nparticles, max_particles_in_box,
" - ".join(f"{k}: {v}" for k, v in kwargs.items()))
logger.info("%dD %s - %d particles - max leaf weight %d - %s",
dims, dtype.type.__name__, nparticles, max_leaf_refine_weight,
" - ".join(f"{k}: {v}" for k, v in kwargs.items()))
logger.info(75 * "-")
particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
np_particles = actx.to_numpy(particles)
pt.plot(np_particles[0], np_particles[1], "x")
tree, _ = builder(actx.queue, particles,
max_particles_in_box=max_particles_in_box,
refine_weights=refine_weights,
max_leaf_refine_weight=max_leaf_refine_weight,
debug=True, **kwargs)
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([actx.to_numpy(pi) for pi in particles])
assert np.all(sorted_particles
== unsorted_particles[:, tree.user_source_ids])
refine_weights_reordered = (
actx.to_numpy(refine_weights)[tree.user_source_ids])
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
from boxtree import box_flags_enum as bfe
scaled_tol = tol*tree.root_extent
# Empty boxes exist in non-pruned trees--which themselves are undocumented.
# These boxes will fail these tests.
if not (tree.box_flags[ibox] & bfe.IS_SOURCE_OR_TARGET_BOX):
extent_low, extent_high = tree.get_box_extent(ibox)
assert np.all(extent_low >= tree.bounding_box[0] - scaled_tol), (
ibox, extent_low, tree.bounding_box[0])
assert np.all(extent_high <= tree.bounding_box[1] + scaled_tol), (
ibox, extent_high, tree.bounding_box[1])
center = tree.box_centers[:, ibox]
for _, bbox_min, bbox_max in [
(
"source",
tree.box_source_bounding_box_min[:, ibox],
tree.box_source_bounding_box_max[:, ibox]),
(
"target",
tree.box_target_bounding_box_min[:, ibox],
tree.box_target_bounding_box_max[:, ibox]),
]:
assert np.all(extent_low - scaled_tol <= bbox_min)
assert np.all(bbox_min - scaled_tol <= center)
assert np.all(bbox_max - scaled_tol <= extent_high)
assert np.all(center - scaled_tol <= bbox_max)
start = tree.box_source_starts[ibox]
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
box_particles = sorted_particles[:,
start:start+tree.box_source_counts_cumul[ibox]]
(box_particles < extent_high[:, np.newaxis] + scaled_tol)
& (extent_low[:, np.newaxis] - scaled_tol <= box_particles))
all_good_here = np.all(good)
if visualize and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
plotter.draw_box(ibox, edgecolor="red")
if not (tree.box_flags[ibox] & bfe.HAS_SOURCE_OR_TARGET_CHILD_BOXES):
# Check that leaf particle density is as promised.
nparticles_in_box = tree.box_source_counts_cumul[ibox]
if max_particles_in_box is not None:
if nparticles_in_box > max_particles_in_box:
print("too many particles ({} > {}); box {}".format(
nparticles_in_box, max_particles_in_box, ibox))
all_good_here = False
else:
assert refine_weights is not None
box_weight = np.sum(
refine_weights_reordered[start:start+nparticles_in_box])
if box_weight > max_leaf_refine_weight:
print("refine weight exceeded ({} > {}); box {}".format(
box_weight, max_leaf_refine_weight, ibox))
all_good_here = False
all_good_so_far = all_good_so_far and all_good_here
pt.gca().set_aspect("equal", "datalim")
pt.show()
def particle_tree_test_decorator(f):
f = pytest.mark.opencl(f)
f = pytest.mark.parametrize("dtype", [np.float64, np.float32])(f)
f = pytest.mark.parametrize("dims", [2, 3])(f)
return f
@particle_tree_test_decorator
def test_single_box_particle_tree(actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
run_build_test(builder, actx, dims,
dtype, 4, max_particles_in_box=30, visualize=visualize)
def test_two_level_particle_tree(actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
run_build_test(builder, actx, dims,
dtype, 50, max_particles_in_box=30, visualize=visualize)
def test_unpruned_particle_tree(actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
# test unpruned tree build
run_build_test(builder, actx, dims, dtype, 10**5,
visualize=visualize, max_particles_in_box=30, skip_prune=True)
def test_particle_tree_with_reallocations(
actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
run_build_test(builder, actx, dims, dtype, 10**5,
max_particles_in_box=30, visualize=visualize, nboxes_guess=5)
@particle_tree_test_decorator
def test_particle_tree_with_many_empty_leaves(
actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
run_build_test(builder, actx, dims, dtype, 10**5,
max_particles_in_box=5, visualize=visualize)
def test_vanilla_particle_tree(actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
run_build_test(builder, actx, dims, dtype, 10**5,
max_particles_in_box=30, visualize=visualize)
@particle_tree_test_decorator
def test_explicit_refine_weights_particle_tree(
actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
from boxtree import TreeBuilder
rng = np.random.default_rng(10)
refine_weights = actx.from_numpy(
rng.integers(1, 10, (nparticles,), dtype=np.int32)
)
run_build_test(builder, actx, dims, dtype, nparticles,
refine_weights=refine_weights, max_leaf_refine_weight=100,
Andreas Klöckner
committed
def test_non_adaptive_particle_tree(actx_factory, dtype, dims, visualize=False):
actx = actx_factory()
run_build_test(builder, actx, dims, dtype, 10**4,
max_particles_in_box=30, visualize=visualize, kind="non-adaptive")
# }}}
# {{{ source/target tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_source_target_tree(actx_factory, dims, visualize=False):
actx = actx_factory()
Andreas Klöckner
committed
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
Andreas Klöckner
committed
sources = make_normal_particle_array(actx.queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(actx.queue, ntargets, dims, dtype,
seed=19)
Andreas Klöckner
committed
import matplotlib.pyplot as pt
np_sources, np_targets = actx.to_numpy(sources), actx.to_numpy(targets)
pt.plot(np_sources[0], np_sources[1], "rx")
pt.plot(np_targets[0], np_targets[1], "g+")
Andreas Klöckner
committed
from boxtree import TreeBuilder
Andreas Klöckner
committed
actx.queue.finish()
tree, _ = tb(actx.queue, sources, targets=targets,
max_particles_in_box=10, debug=True)
Andreas Klöckner
committed
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
Andreas Klöckner
committed
unsorted_sources = np.array([actx.to_numpy(pi) for pi in sources])
unsorted_targets = np.array([actx.to_numpy(pi) for pi in targets])
assert np.all(sorted_sources
== unsorted_sources[:, tree.user_source_ids])
Andreas Klöckner
committed
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert np.all(sorted_targets
== unsorted_targets[:, user_target_ids])
Andreas Klöckner
committed
all_good_so_far = True
Andreas Klöckner
committed
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
Andreas Klöckner
committed
tol = 1e-15
extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner
committed
assert np.all(extent_low
>= tree.bounding_box[0] - 1e-12*tree.root_extent), ibox
assert np.all(extent_high
<= tree.bounding_box[1] + 1e-12*tree.root_extent), ibox
Andreas Klöckner
committed
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
Andreas Klöckner
committed
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
for what, particles in [
src_start:src_start+tree.box_source_counts_cumul[ibox]]),
tgt_start:tgt_start+tree.box_target_counts_cumul[ibox]]),
(particles < extent_high[:, np.newaxis] + tol)
& (extent_low[:, np.newaxis] - tol <= particles),
axis=0)
Andreas Klöckner
committed
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
Andreas Klöckner
committed
plotter.draw_box(ibox, edgecolor="red")
pt.show()
Andreas Klöckner
committed
if not all_good_here:
print("BAD BOX %s %d" % (what, ibox))
all_good_so_far = all_good_so_far and all_good_here
Andreas Klöckner
committed
assert all_good_so_far
Andreas Klöckner
committed
pt.gca().set_aspect("equal", "datalim")
pt.show()
Andreas Klöckner
committed
Andreas Klöckner
committed
# {{{ test sources/targets-with-extent tree
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
@pytest.mark.parametrize("extent_norm", ["linf", "l2"])
def test_extent_tree(actx_factory, dims, extent_norm, visualize=False):
actx = actx_factory()
nsources = 100000
ntargets = 200000
dtype = np.float64
npoint_sources_per_source = 16
sources = make_normal_particle_array(actx.queue, nsources, dims, dtype,
seed=12)
targets = make_normal_particle_array(actx.queue, ntargets, dims, dtype,
seed=19)
refine_weights = actx.zeros(nsources + ntargets, np.int32)
Andreas Klöckner
committed
refine_weights[:nsources] = 1
rng = np.random.default_rng(13)
source_radii = actx.from_numpy(
2**rng.uniform(-10, 0, (nsources,)).astype(dtype)
)
target_radii = actx.from_numpy(
2**rng.uniform(-10, 0, (ntargets,)).astype(dtype)
)
from boxtree import TreeBuilder
actx.queue.finish()
dev_tree, _ = tb(actx.queue, sources, targets=targets,
Andreas Klöckner
committed
source_radii=source_radii,
target_radii=target_radii,
Andreas Klöckner
committed
refine_weights=refine_weights,
max_leaf_refine_weight=20,
#max_particles_in_box=10,
# Set artificially small, to exercise the reallocation code.
nboxes_guess=10,
debug=True,
stick_out_factor=0)
logger.info("transfer tree, check orderings")
tree = dev_tree.get(queue=actx.queue)
np_sources, np_targets = actx.to_numpy(sources), actx.to_numpy(targets)
pt.plot(np_sources[0], np_sources[1], "rx")
pt.plot(np_targets[0], np_targets[1], "g+")
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.gca().set_aspect("equal", "datalim")
pt.show()
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
sorted_source_radii = tree.source_radii
sorted_target_radii = tree.target_radii
unsorted_sources = np.array([actx.to_numpy(pi) for pi in sources])
unsorted_targets = np.array([actx.to_numpy(pi) for pi in targets])
unsorted_source_radii = actx.to_numpy(source_radii)
unsorted_target_radii = actx.to_numpy(target_radii)
Andreas Klöckner
committed
assert np.all(sorted_sources
== unsorted_sources[:, tree.user_source_ids])
assert np.all(sorted_source_radii
== unsorted_source_radii[tree.user_source_ids])
# {{{ test box structure, stick-out criterion
logger.info("test box structure, stick-out criterion")
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
if ntargets:
assert np.all(sorted_targets
== unsorted_targets[:, user_target_ids])
assert np.all(sorted_target_radii
== unsorted_target_radii[user_target_ids])
all_good_so_far = True
# {{{ check sources, targets
Andreas Klöckner
committed
assert np.sum(tree.box_source_counts_nonchild) == nsources
assert np.sum(tree.box_target_counts_nonchild) == ntargets
for ibox in range(tree.nboxes):
kid_sum = sum(
tree.box_target_counts_cumul[ichild_box]
for ichild_box in tree.box_child_ids[:, ibox]
if ichild_box != 0)
assert (
tree.box_target_counts_cumul[ibox]
== (
tree.box_target_counts_nonchild[ibox]
+ kid_sum)), ibox
Andreas Klöckner
committed
extent_low, extent_high = tree.get_box_extent(ibox)
assert np.all(extent_low
>= tree.bounding_box[0] - 1e-12*tree.root_extent), ibox
assert np.all(extent_high
<= tree.bounding_box[1] + 1e-12*tree.root_extent), ibox
box_children = tree.box_child_ids[:, ibox]
existing_children = box_children[box_children != 0]
assert (tree.box_source_counts_nonchild[ibox]
+ np.sum(tree.box_source_counts_cumul[existing_children])
== tree.box_source_counts_cumul[ibox])
assert (tree.box_target_counts_nonchild[ibox]
+ np.sum(tree.box_target_counts_cumul[existing_children])
== tree.box_target_counts_cumul[ibox])
del existing_children
del box_children
for ibox in range(tree.nboxes):
lev = int(tree.box_levels[ibox])
box_radius = 0.5 * tree.root_extent / (1 << lev)
box_center = tree.box_centers[:, ibox]
extent_low = box_center - box_radius
extent_high = box_center + box_radius
stick_out_dist = tree.stick_out_factor * box_radius
radius_with_stickout = (1 + tree.stick_out_factor) * box_radius
for what, starts, counts, points, radii in [
("source", tree.box_source_starts, tree.box_source_counts_cumul,
sorted_sources, sorted_source_radii),
("target", tree.box_target_starts, tree.box_target_counts_cumul,
sorted_targets, sorted_target_radii),
]:
bstart = starts[ibox]
bslice = slice(bstart, bstart+counts[ibox])
check_particles = points[:, bslice]
check_radii = radii[bslice]
(check_particles + check_radii
< extent_high[:, np.newaxis] + stick_out_dist)
(extent_low[:, np.newaxis] - stick_out_dist
<= check_particles - check_radii),
axis=0)
elif extent_norm == "l2":
center_dists = np.sqrt(
np.sum(
(check_particles - box_center.reshape(-1, 1))**2,
axis=0))
good = (
(center_dists + check_radii)**2
< dims * radius_with_stickout**2)
else:
raise ValueError(f"unexpected value of extent_norm: '{extent_norm}'")
if not all_good_here:
print("BAD BOX %s %d level %d"
% (what, ibox, tree.box_levels[ibox]))
all_good_so_far = all_good_so_far and all_good_here
assert all_good_here
# }}}
assert all_good_so_far
# }}}
# {{{ create, link point sources
logger.info("creating point sources")
from pytools.obj_array import make_obj_array
point_sources = make_obj_array([
unsorted_sources[i][:, np.newaxis]
+ unsorted_source_radii[:, np.newaxis]
* rng.uniform(-1, 1, size=(nsources, npoint_sources_per_source))
)
for i in range(dims)])
point_source_starts = actx.from_numpy(
np.arange(
0,
(nsources + 1) * npoint_sources_per_source,
npoint_sources_per_source,
dtype=tree.particle_id_dtype)
)
from boxtree.tree import link_point_sources
dev_tree = link_point_sources(actx.queue, dev_tree,
point_source_starts, point_sources,
debug=True)
# }}}
# }}}
# {{{ leaves to balls query test
@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_leaves_to_balls_query(actx_factory, dims, visualize=False):
actx = actx_factory()
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
import matplotlib.pyplot as pt
np_particles = actx.to_numpy(particles)
pt.plot(np_particles[0], np_particles[1], "x")
actx.queue.finish()
tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)
ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype)
ball_radii = 0.1 + actx.zeros(nballs, dtype)
from boxtree.area_query import LeavesToBallsLookupBuilder
lblb = LeavesToBallsLookupBuilder(actx.context)
lbl, _ = lblb(actx.queue, tree, ball_centers, ball_radii)
tree = tree.get(queue=actx.queue)
lbl = lbl.get(queue=actx.queue)
ball_centers = np.array([actx.to_numpy(x) for x in ball_centers]).T
ball_radii = actx.to_numpy(ball_radii)
assert len(lbl.balls_near_box_starts) == tree.nboxes + 1
from boxtree import box_flags_enum
if tree.box_flags[ibox] & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# {{{ area query test
def run_area_query_test(actx, tree, ball_centers, ball_radii):
"""
Performs an area query and checks that the result is as expected.
"""
from boxtree.area_query import AreaQueryBuilder
aqb = AreaQueryBuilder(actx.context)
area_query, _ = aqb(actx.queue, tree, ball_centers, ball_radii)
# Get data to host for test.
tree = tree.get(queue=actx.queue)
area_query = area_query.get(queue=actx.queue)
ball_centers = np.array([actx.to_numpy(x) for x in ball_centers]).T
ball_radii = actx.to_numpy(ball_radii)
from boxtree import box_flags_enum
leaf_boxes, = (
tree.box_flags & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES == 0
).nonzero()
leaf_box_radii = np.empty(len(leaf_boxes))
leaf_box_centers = np.empty((len(leaf_boxes), dims))
for idx, leaf_box in enumerate(leaf_boxes):
box_center = tree.box_centers[:, leaf_box]
ext_l, ext_h = tree.get_box_extent(leaf_box)
leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
leaf_box_centers[idx] = box_center
for ball_nr, (ball_center, ball_radius) \
in enumerate(zip(ball_centers, ball_radii)):
linf_box_dists = np.max(np.abs(ball_center - leaf_box_centers), axis=-1)
near_leaves_indices, \
= np.where(linf_box_dists < ball_radius + leaf_box_radii)
near_leaves = leaf_boxes[near_leaves_indices]
start, end = area_query.leaves_near_ball_starts[ball_nr:ball_nr+2]
found = area_query.leaves_near_ball_lists[start:end]
actual = near_leaves
assert set(found) == set(actual), (found, actual)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query(actx_factory, dims, visualize=False):
actx = actx_factory()
nparticles = 10**5
dtype = np.float64
particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
np_particles = actx.to_numpy(particles)
pt.plot(np_particles[0], np_particles[1], "x")
actx.queue.finish()
tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)
ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype)
ball_radii = 0.1 + actx.zeros(nballs, dtype)
run_area_query_test(actx, tree, ball_centers, ball_radii)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_balls_outside_bbox(actx_factory, dims, visualize=False):
"""
The input to the area query includes balls whose centers are not within
the tree bounding box.
"""
nparticles = 10**4
dtype = np.float64
particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
np_particles = actx.to_numpy(particles)
pt.plot(np_particles[0], np_particles[1], "x")
actx.queue.finish()
tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
bbox_min = tree.bounding_box[0].min()
bbox_max = tree.bounding_box[1].max()
from pytools.obj_array import make_obj_array
actx.from_numpy(
rng.uniform(bbox_min - 1, bbox_max + 1, nballs).astype(dtype))
ball_radii = 0.1 + actx.zeros(nballs, dtype)
run_area_query_test(actx, tree, ball_centers, ball_radii)
@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_elwise(actx_factory, dims, visualize=False):
actx = actx_factory()
particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
np_particles = actx.to_numpy(particles)
pt.plot(np_particles[0], np_particles[1], "x")
actx.queue.finish()
tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)
ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype)
ball_radii = 0.1 + actx.zeros(nballs, dtype)
from boxtree.area_query import AreaQueryElementwiseTemplate, PeerListFinder
template = AreaQueryElementwiseTemplate(
extra_args="""
coord_t *ball_radii,
%for ax in AXIS_NAMES[:dimensions]:
coord_t *ball_${ax},
%endfor
""",
ball_center_and_radius_expr="""
%for ax in AXIS_NAMES[:dimensions]:
${ball_center}.${ax} = ball_${ax}[${i}];
%endfor
${ball_radius} = ball_radii[${i}];
""",
leaf_found_op="")
peer_lists, evt = PeerListFinder(actx.context)(actx.queue, tree)
kernel = template.generate(
dims,
tree.coord_dtype,
tree.box_id_dtype,
peer_lists.peer_list_starts.dtype,
tree.nlevels)
evt = kernel(
*template.unwrap_args(
tree, peer_lists, ball_radii, *ball_centers),
# {{{ level restriction test
@pytest.mark.opencl
@pytest.mark.parametrize("lookbehind", [0, 1])
@pytest.mark.parametrize("skip_prune", [True, False])
@pytest.mark.parametrize("dims", [2, 3])
def test_level_restriction(
actx_factory, dims, skip_prune, lookbehind, visualize=False):
actx = actx_factory()
nparticles = 10**5
dtype = np.float64
from boxtree.tools import make_surface_particle_array
particles = make_surface_particle_array(
actx.queue, nparticles, dims, dtype, seed=15)
np_particles = actx.to_numpy(particles)
pt.plot(np_particles[0], np_particles[1], "x")
actx.queue.finish()
tree_dev, _ = tb(actx.queue, particles,
kind="adaptive-level-restricted",
max_particles_in_box=30, debug=True,
skip_prune=skip_prune, lr_lookbehind=lookbehind,
# Artificially low to exercise reallocation code
nboxes_guess=10)
def find_neighbors(leaf_box_centers, leaf_box_radii):
# We use an area query with a ball that is slightly larger than
# the size of a leaf box to find the neighboring leaves.
#
# Note that since this comes from an area query, the self box will be
# included in the neighbor list.
from boxtree.area_query import AreaQueryBuilder
aqb = AreaQueryBuilder(actx.context)
ball_radii = actx.from_numpy(np.min(leaf_box_radii) / 2 + leaf_box_radii)
leaf_box_centers = [actx.from_numpy(axis) for axis in leaf_box_centers]
area_query, _ = aqb(actx.queue, tree_dev, leaf_box_centers, ball_radii)
area_query = area_query.get(queue=actx.queue)
return (area_query.leaves_near_ball_starts,
area_query.leaves_near_ball_lists)
# Get data to host for test.
tree = tree_dev.get(queue=actx.queue)
# Find leaf boxes.
from boxtree import box_flags_enum
leaf_boxes, = (
tree.box_flags & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES == 0
).nonzero()
leaf_box_radii = np.empty(len(leaf_boxes))
leaf_box_centers = np.empty((dims, len(leaf_boxes)))
for idx, leaf_box in enumerate(leaf_boxes):
box_center = tree.box_centers[:, leaf_box]
ext_l, ext_h = tree.get_box_extent(leaf_box)
leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
leaf_box_centers[:, idx] = box_center
neighbor_starts, neighbor_and_self_lists = find_neighbors(
leaf_box_centers, leaf_box_radii)
# Check level restriction.
for leaf_idx, leaf in enumerate(leaf_boxes):
neighbors = neighbor_and_self_lists[
neighbor_starts[leaf_idx]:neighbor_starts[leaf_idx+1]]
neighbor_levels = np.array(tree.box_levels[neighbors], dtype=int)
leaf_level = int(tree.box_levels[leaf])
assert np.all(np.abs(neighbor_levels - leaf_level) <= 1), \
(neighbor_levels, leaf_level)
# }}}
# {{{ space invader query test
@pytest.mark.opencl
@pytest.mark.geo_lookup
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("dims", [2, 3])
def test_space_invader_query(actx_factory, dims, dtype, visualize=False):
actx = actx_factory()