Skip to content
test_tree.py 37.2 KiB
Newer Older
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

Alexandru Fikl's avatar
Alexandru Fikl committed
import logging
Andreas Klöckner's avatar
Andreas Klöckner committed
import sys

import numpy as np
Alexandru Fikl's avatar
Alexandru Fikl committed
import pytest
from arraycontext import pytest_generate_tests_for_array_contexts
Andreas Klöckner's avatar
Andreas Klöckner committed
from boxtree.array_context import (
    PytestPyOpenCLArrayContextFactory,
    _acf,  # noqa: F401
)
from boxtree.tools import make_normal_particle_array
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts([
    PytestPyOpenCLArrayContextFactory,
    ])

Andreas Klöckner's avatar
Andreas Klöckner committed

# {{{ bounding box test

@pytest.mark.parametrize("dtype", [np.float32, np.float64])
Andreas Klöckner's avatar
Andreas Klöckner committed
@pytest.mark.parametrize("dims", [2, 3])
@pytest.mark.parametrize("nparticles", [9, 4096, 10**5])
def test_bounding_box(actx_factory, dtype, dims, nparticles):
    actx = actx_factory()
    from boxtree.bounding_box import BoundingBoxFinder
Alexandru Fikl's avatar
Alexandru Fikl committed
    from boxtree.tools import AXIS_NAMES
    bbf = BoundingBoxFinder(actx.context)
    axis_names = AXIS_NAMES[:dims]
    logger.info("%s - %s %s", dtype, dims, nparticles)
    particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
    bbox_min = [np.min(actx.to_numpy(x)) for x in particles]
    bbox_max = [np.max(actx.to_numpy(x)) for x in particles]
    bbox_cl, _evt = bbf(particles, radii=None)
    bbox_cl = actx.to_numpy(bbox_cl)
    bbox_min_cl = np.empty(dims, dtype)
    bbox_max_cl = np.empty(dims, dtype)
    for i, ax in enumerate(axis_names):
        bbox_min_cl[i] = bbox_cl[f"min_{ax}"]
        bbox_max_cl[i] = bbox_cl[f"max_{ax}"]
    assert np.all(bbox_min == bbox_min_cl)
    assert np.all(bbox_max == bbox_max_cl)
Andreas Klöckner's avatar
Andreas Klöckner committed

# {{{ test basic (no source/target distinction) tree build
Andreas Klöckner's avatar
Andreas Klöckner committed

def run_build_test(builder, actx, dims, dtype, nparticles, visualize,
        max_particles_in_box=None, max_leaf_refine_weight=None,
        refine_weights=None, **kwargs):
    dtype = np.dtype(dtype)
Andreas Klöckner's avatar
Andreas Klöckner committed

    if dtype == np.float32:
        tol = 1e-4
    elif dtype == np.float64:
        tol = 1e-12
    else:
Andreas Klöckner's avatar
Andreas Klöckner committed
        raise RuntimeError(f"unsupported dtype: {dtype}")
    logger.info(75 * "-")

    if max_particles_in_box is not None:
        logger.info("%dD %s - %d particles - max %d per box - %s",
            dims, dtype.type.__name__, nparticles, max_particles_in_box,
            " - ".join(f"{k}: {v}" for k, v in kwargs.items()))
        logger.info("%dD %s - %d particles - max leaf weight %d  - %s",
            dims, dtype.type.__name__, nparticles, max_leaf_refine_weight,
            " - ".join(f"{k}: {v}" for k, v in kwargs.items()))

    logger.info(75 * "-")
    particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
Andreas Klöckner's avatar
Andreas Klöckner committed

    if visualize:
        import matplotlib.pyplot as pt
        np_particles = actx.to_numpy(particles)
        pt.plot(np_particles[0], np_particles[1], "x")
Andreas Klöckner's avatar
Andreas Klöckner committed

    actx.queue.finish()
    tree, _ = builder(actx.queue, particles,
                      max_particles_in_box=max_particles_in_box,
                      refine_weights=refine_weights,
                      max_leaf_refine_weight=max_leaf_refine_weight,
                      debug=True, **kwargs)
    tree = tree.get(queue=actx.queue)
Andreas Klöckner's avatar
Andreas Klöckner committed

    sorted_particles = np.array(list(tree.sources))
Andreas Klöckner's avatar
Andreas Klöckner committed

    unsorted_particles = np.array([actx.to_numpy(pi) for pi in particles])
    assert np.all(sorted_particles
            == unsorted_particles[:, tree.user_source_ids])
Andreas Klöckner's avatar
Andreas Klöckner committed

    if refine_weights is not None:
        refine_weights_reordered = (
                actx.to_numpy(refine_weights)[tree.user_source_ids])
    all_good_so_far = True
Andreas Klöckner's avatar
Andreas Klöckner committed

    if visualize:
        from boxtree.visualization import TreePlotter
        plotter = TreePlotter(tree)
        plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
        plotter.set_bounding_box()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import box_flags_enum as bfe

    scaled_tol = tol*tree.root_extent
Andreas Klöckner's avatar
Andreas Klöckner committed
    for ibox in range(tree.nboxes):
        # Empty boxes exist in non-pruned trees--which themselves are undocumented.
        # These boxes will fail these tests.
        if not (tree.box_flags[ibox] & bfe.IS_SOURCE_OR_TARGET_BOX):
        extent_low, extent_high = tree.get_box_extent(ibox)
Andreas Klöckner's avatar
Andreas Klöckner committed

        assert np.all(extent_low >= tree.bounding_box[0] - scaled_tol), (
                ibox, extent_low, tree.bounding_box[0])
        assert np.all(extent_high <= tree.bounding_box[1] + scaled_tol), (
                ibox, extent_high, tree.bounding_box[1])
Andreas Klöckner's avatar
Andreas Klöckner committed

        center = tree.box_centers[:, ibox]

        for _, bbox_min, bbox_max in [
                (
                    "source",
                    tree.box_source_bounding_box_min[:, ibox],
                    tree.box_source_bounding_box_max[:, ibox]),
                (
                    "target",
                    tree.box_target_bounding_box_min[:, ibox],
                    tree.box_target_bounding_box_max[:, ibox]),
                ]:
            assert np.all(extent_low - scaled_tol <= bbox_min)
            assert np.all(bbox_min - scaled_tol <= center)
            assert np.all(bbox_max - scaled_tol <= extent_high)
            assert np.all(center - scaled_tol <= bbox_max)
        start = tree.box_source_starts[ibox]
        box_children = tree.box_child_ids[:, ibox]
        existing_children = box_children[box_children != 0]

        assert (tree.box_source_counts_nonchild[ibox]
                + np.sum(tree.box_source_counts_cumul[existing_children])
                == tree.box_source_counts_cumul[ibox])

        box_particles = sorted_particles[:,
                start:start+tree.box_source_counts_cumul[ibox]]
                (box_particles < extent_high[:, np.newaxis] + scaled_tol)
Andreas Klöckner's avatar
Andreas Klöckner committed
                & (extent_low[:, np.newaxis] - scaled_tol <= box_particles))
Andreas Klöckner's avatar
Andreas Klöckner committed

        all_good_here = np.all(good)
        if visualize and not all_good_here and all_good_so_far:
            pt.plot(
                    box_particles[0, np.where(~good)[1]],
                    box_particles[1, np.where(~good)[1]], "ro")
Andreas Klöckner's avatar
Andreas Klöckner committed

            plotter.draw_box(ibox, edgecolor="red")
Andreas Klöckner's avatar
Andreas Klöckner committed

        if not all_good_here:
Andreas Klöckner's avatar
Andreas Klöckner committed
            print("BAD BOX", ibox)
Andreas Klöckner's avatar
Andreas Klöckner committed

        if not (tree.box_flags[ibox] & bfe.HAS_SOURCE_OR_TARGET_CHILD_BOXES):
            # Check that leaf particle density is as promised.
            nparticles_in_box = tree.box_source_counts_cumul[ibox]
            if max_particles_in_box is not None:
                if nparticles_in_box > max_particles_in_box:
Andreas Klöckner's avatar
Andreas Klöckner committed
                    print("too many particles "
                          f"({nparticles_in_box} > {max_particles_in_box}); box {ibox}")
                    all_good_here = False
            else:
                assert refine_weights is not None
                box_weight = np.sum(
Andreas Klöckner's avatar
Andreas Klöckner committed
                    refine_weights_reordered[start:start+nparticles_in_box])  # pylint: disable=possibly-used-before-assignment
                if box_weight > max_leaf_refine_weight:
Andreas Klöckner's avatar
Andreas Klöckner committed
                    print("refine weight exceeded "
                          f"({box_weight} > {max_leaf_refine_weight}); box {ibox}")
                    all_good_here = False

        all_good_so_far = all_good_so_far and all_good_here
    if visualize:
        pt.gca().set_aspect("equal", "datalim")
        pt.show()
Andreas Klöckner's avatar
Andreas Klöckner committed

    assert all_good_so_far
Andreas Klöckner's avatar
Andreas Klöckner committed

Andreas Klöckner's avatar
Andreas Klöckner committed
def particle_tree_test_decorator(f):
    f = pytest.mark.opencl(f)
    f = pytest.mark.parametrize("dtype", [np.float64, np.float32])(f)
    f = pytest.mark.parametrize("dims", [2, 3])(f)

    return f


@particle_tree_test_decorator
def test_single_box_particle_tree(actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
Andreas Klöckner's avatar
Andreas Klöckner committed

    run_build_test(builder, actx, dims,
            dtype, 4, max_particles_in_box=30, visualize=visualize)
Andreas Klöckner's avatar
Andreas Klöckner committed


@particle_tree_test_decorator
def test_two_level_particle_tree(actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
    run_build_test(builder, actx, dims,
            dtype, 50, max_particles_in_box=30, visualize=visualize)
Andreas Klöckner's avatar
Andreas Klöckner committed


@particle_tree_test_decorator
def test_unpruned_particle_tree(actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
    run_build_test(builder, actx, dims, dtype, 10**5,
            visualize=visualize, max_particles_in_box=30, skip_prune=True)
Andreas Klöckner's avatar
Andreas Klöckner committed


@particle_tree_test_decorator
def test_particle_tree_with_reallocations(
        actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
    run_build_test(builder, actx, dims, dtype, 10**5,
            max_particles_in_box=30, visualize=visualize, nboxes_guess=5)
Andreas Klöckner's avatar
Andreas Klöckner committed


@particle_tree_test_decorator
def test_particle_tree_with_many_empty_leaves(
        actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
    run_build_test(builder, actx, dims, dtype, 10**5,
            max_particles_in_box=5, visualize=visualize)
Andreas Klöckner's avatar
Andreas Klöckner committed


@particle_tree_test_decorator
def test_vanilla_particle_tree(actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
    run_build_test(builder, actx, dims, dtype, 10**5,
            max_particles_in_box=30, visualize=visualize)


@particle_tree_test_decorator
def test_explicit_refine_weights_particle_tree(
        actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
    rng = np.random.default_rng(10)
    refine_weights = actx.from_numpy(
            rng.integers(1, 10, (nparticles,), dtype=np.int32)
            )
    run_build_test(builder, actx, dims, dtype, nparticles,
            refine_weights=refine_weights, max_leaf_refine_weight=100,
            visualize=visualize)
Andreas Klöckner's avatar
Andreas Klöckner committed
@particle_tree_test_decorator
def test_non_adaptive_particle_tree(actx_factory, dtype, dims, visualize=False):
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree import TreeBuilder
    builder = TreeBuilder(actx.context)
    run_build_test(builder, actx, dims, dtype, 10**4,
            max_particles_in_box=30, visualize=visualize, kind="non-adaptive")
Andreas Klöckner's avatar
Andreas Klöckner committed

# }}}


# {{{ source/target tree

@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
def test_source_target_tree(actx_factory, dims, visualize=False):
    actx = actx_factory()
    nsources = 2 * 10**5
    ntargets = 3 * 10**5
    dtype = np.float64
    sources = make_normal_particle_array(actx.queue, nsources, dims, dtype,
    targets = make_normal_particle_array(actx.queue, ntargets, dims, dtype,
    if visualize:
        np_sources, np_targets = actx.to_numpy(sources), actx.to_numpy(targets)
        pt.plot(np_sources[0], np_sources[1], "rx")
        pt.plot(np_targets[0], np_targets[1], "g+")
Andreas Klöckner's avatar
Andreas Klöckner committed
        pt.show()
    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    actx.queue.finish()
    tree, _ = tb(actx.queue, sources, targets=targets,
            max_particles_in_box=10, debug=True)
    tree = tree.get(queue=actx.queue)
    sorted_sources = np.array(list(tree.sources))
    sorted_targets = np.array(list(tree.targets))
    unsorted_sources = np.array([actx.to_numpy(pi) for pi in sources])
    unsorted_targets = np.array([actx.to_numpy(pi) for pi in targets])
    assert np.all(sorted_sources
            == unsorted_sources[:, tree.user_source_ids])
    user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
    user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
    assert np.all(sorted_targets
            == unsorted_targets[:, user_target_ids])
    if visualize:
        from boxtree.visualization import TreePlotter
        plotter = TreePlotter(tree)
        plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
        plotter.set_bounding_box()
Andreas Klöckner's avatar
Andreas Klöckner committed
    for ibox in range(tree.nboxes):
        extent_low, extent_high = tree.get_box_extent(ibox)
        assert np.all(extent_low
                >= tree.bounding_box[0] - 1e-12*tree.root_extent), ibox
        assert np.all(extent_high
                <= tree.bounding_box[1] + 1e-12*tree.root_extent), ibox
        src_start = tree.box_source_starts[ibox]
        tgt_start = tree.box_target_starts[ibox]
        box_children = tree.box_child_ids[:, ibox]
        existing_children = box_children[box_children != 0]

        assert (tree.box_source_counts_nonchild[ibox]
                + np.sum(tree.box_source_counts_cumul[existing_children])
                == tree.box_source_counts_cumul[ibox])
        assert (tree.box_target_counts_nonchild[ibox]
                + np.sum(tree.box_target_counts_cumul[existing_children])
                == tree.box_target_counts_cumul[ibox])

Andreas Klöckner's avatar
Andreas Klöckner committed
                ("sources", sorted_sources[:,
                    src_start:src_start+tree.box_source_counts_cumul[ibox]]),
Andreas Klöckner's avatar
Andreas Klöckner committed
                ("targets", sorted_targets[:,
                    tgt_start:tgt_start+tree.box_target_counts_cumul[ibox]]),
            good = np.all(
                    (particles < extent_high[:, np.newaxis] + tol)
                    & (extent_low[:, np.newaxis] - tol <= particles),
                    axis=0)
            all_good_here = np.all(good)
            if visualize and not all_good_here:
                pt.plot(
                        particles[0, np.where(~good)[0]],
                        particles[1, np.where(~good)[0]], "ro")
                plotter.draw_box(ibox, edgecolor="red")
                pt.show()
            if not all_good_here:
                print("BAD BOX %s %d" % (what, ibox))

            all_good_so_far = all_good_so_far and all_good_here
    if visualize:
        pt.gca().set_aspect("equal", "datalim")
        pt.show()
Andreas Klöckner's avatar
Andreas Klöckner committed

@pytest.mark.opencl
@pytest.mark.parametrize("dims", [2, 3])
@pytest.mark.parametrize("extent_norm", ["linf", "l2"])
def test_extent_tree(actx_factory, dims, extent_norm, visualize=False):
    actx = actx_factory()
    nsources = 100000
    ntargets = 200000
    dtype = np.float64
    npoint_sources_per_source = 16
    sources = make_normal_particle_array(actx.queue, nsources, dims, dtype,
    targets = make_normal_particle_array(actx.queue, ntargets, dims, dtype,
    refine_weights = actx.np.zeros(nsources + ntargets, np.int32)
    rng = np.random.default_rng(13)
    source_radii = actx.from_numpy(
            2**rng.uniform(-10, 0, (nsources,)).astype(dtype)
            )
    target_radii = actx.from_numpy(
            2**rng.uniform(-10, 0, (ntargets,)).astype(dtype)
            )
    tb = TreeBuilder(actx.context)
    actx.queue.finish()
    dev_tree, _ = tb(actx.queue, sources, targets=targets,
            source_radii=source_radii,
            target_radii=target_radii,
            extent_norm=extent_norm,

            refine_weights=refine_weights,
            max_leaf_refine_weight=20,

            # max_particles_in_box=10,

            # Set artificially small, to exercise the reallocation code.
            nboxes_guess=10,

            debug=True,
            stick_out_factor=0)

    logger.info("transfer tree, check orderings")

    tree = dev_tree.get(queue=actx.queue)
    if visualize:
        import matplotlib.pyplot as pt
        np_sources, np_targets = actx.to_numpy(sources), actx.to_numpy(targets)
        pt.plot(np_sources[0], np_sources[1], "rx")
        pt.plot(np_targets[0], np_targets[1], "g+")

        from boxtree.visualization import TreePlotter
        plotter = TreePlotter(tree)
        plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
        plotter.draw_box_numbers()
        plotter.set_bounding_box()

        pt.gca().set_aspect("equal", "datalim")
        pt.show()

    sorted_sources = np.array(list(tree.sources))
    sorted_targets = np.array(list(tree.targets))
    sorted_source_radii = tree.source_radii
    sorted_target_radii = tree.target_radii

    unsorted_sources = np.array([actx.to_numpy(pi) for pi in sources])
    unsorted_targets = np.array([actx.to_numpy(pi) for pi in targets])
    unsorted_source_radii = actx.to_numpy(source_radii)
    unsorted_target_radii = actx.to_numpy(target_radii)
    assert np.all(sorted_sources
            == unsorted_sources[:, tree.user_source_ids])
    assert np.all(sorted_source_radii
            == unsorted_source_radii[tree.user_source_ids])

    # {{{ test box structure, stick-out criterion

    logger.info("test box structure, stick-out criterion")

    user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
    user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
    if ntargets:
        assert np.all(sorted_targets
                == unsorted_targets[:, user_target_ids])
        assert np.all(sorted_target_radii
                == unsorted_target_radii[user_target_ids])
    assert np.sum(tree.box_source_counts_nonchild) == nsources
    assert np.sum(tree.box_target_counts_nonchild) == ntargets

    for ibox in range(tree.nboxes):
        kid_sum = sum(
                    tree.box_target_counts_cumul[ichild_box]
                    for ichild_box in tree.box_child_ids[:, ibox]
                    if ichild_box != 0)
        assert (
                tree.box_target_counts_cumul[ibox]
Andreas Klöckner's avatar
Andreas Klöckner committed
                == (
                    tree.box_target_counts_nonchild[ibox]
                    + kid_sum)), ibox
Andreas Klöckner's avatar
Andreas Klöckner committed
    for ibox in range(tree.nboxes):
        extent_low, extent_high = tree.get_box_extent(ibox)

        assert np.all(extent_low
                >= tree.bounding_box[0] - 1e-12*tree.root_extent), ibox
        assert np.all(extent_high
                <= tree.bounding_box[1] + 1e-12*tree.root_extent), ibox
        box_children = tree.box_child_ids[:, ibox]
        existing_children = box_children[box_children != 0]

        assert (tree.box_source_counts_nonchild[ibox]
                + np.sum(tree.box_source_counts_cumul[existing_children])
                == tree.box_source_counts_cumul[ibox])
        assert (tree.box_target_counts_nonchild[ibox]
                + np.sum(tree.box_target_counts_cumul[existing_children])
                == tree.box_target_counts_cumul[ibox])
    del existing_children
    del box_children

    for ibox in range(tree.nboxes):
        lev = int(tree.box_levels[ibox])
        box_radius = 0.5 * tree.root_extent / (1 << lev)
        box_center = tree.box_centers[:, ibox]
        extent_low = box_center - box_radius
        extent_high = box_center + box_radius

        stick_out_dist = tree.stick_out_factor * box_radius
        radius_with_stickout = (1 + tree.stick_out_factor) * box_radius

        for what, starts, counts, points, radii in [
                ("source", tree.box_source_starts, tree.box_source_counts_cumul,
                    sorted_sources, sorted_source_radii),
                ("target", tree.box_target_starts, tree.box_target_counts_cumul,
                    sorted_targets, sorted_target_radii),
                ]:
            bstart = starts[ibox]
            bslice = slice(bstart, bstart+counts[ibox])
            check_particles = points[:, bslice]
            check_radii = radii[bslice]
            if extent_norm == "linf":
                good = np.all(
                        (check_particles + check_radii
                            < extent_high[:, np.newaxis] + stick_out_dist)
Andreas Klöckner's avatar
Andreas Klöckner committed
                        &
                        (extent_low[:, np.newaxis] - stick_out_dist
                            <= check_particles - check_radii),
                        axis=0)

            elif extent_norm == "l2":
                center_dists = np.sqrt(
                        np.sum(
                            (check_particles - box_center.reshape(-1, 1))**2,
                            axis=0))

                good = (
                        (center_dists + check_radii)**2
                        < dims * radius_with_stickout**2)

            else:
                raise ValueError(f"unexpected value of extent_norm: '{extent_norm}'")
            all_good_here = np.all(good)
                print("BAD BOX %s %d level %d"
                        % (what, ibox, tree.box_levels[ibox]))
            all_good_so_far = all_good_so_far and all_good_here
            assert all_good_here
    assert all_good_so_far

    # }}}

    # {{{ create, link point sources

    logger.info("creating point sources")

    from pytools.obj_array import make_obj_array
    point_sources = make_obj_array([
            actx.from_numpy(
                unsorted_sources[i][:, np.newaxis]
                + unsorted_source_radii[:, np.newaxis]
                * rng.uniform(-1, 1, size=(nsources, npoint_sources_per_source))
                )
    point_source_starts = actx.from_numpy(
            np.arange(
                0,
                (nsources + 1) * npoint_sources_per_source,
                npoint_sources_per_source,
                dtype=tree.particle_id_dtype)
            )
    from boxtree.tree import link_point_sources
    dev_tree = link_point_sources(actx.queue, dev_tree,
            point_source_starts, point_sources,
            debug=True)

    # }}}
Andreas Klöckner's avatar
Andreas Klöckner committed

# {{{ leaves to balls query test
Andreas Klöckner's avatar
Andreas Klöckner committed
@pytest.mark.geo_lookup
@pytest.mark.parametrize("dims", [2, 3])
def test_leaves_to_balls_query(actx_factory, dims, visualize=False):
    actx = actx_factory()

    nparticles = 10**5
    dtype = np.float64

    particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
    if visualize:
        import matplotlib.pyplot as pt
        np_particles = actx.to_numpy(particles)
        pt.plot(np_particles[0], np_particles[1], "x")

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    actx.queue.finish()
    tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)

    nballs = 10**4
    ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype)
    ball_radii = 0.1 + actx.np.zeros(nballs, dtype)
    from boxtree.area_query import LeavesToBallsLookupBuilder
    lblb = LeavesToBallsLookupBuilder(actx.context)
    lbl, _ = lblb(actx.queue, tree, ball_centers, ball_radii)

    # get data to host for test
    tree = tree.get(queue=actx.queue)
    lbl = lbl.get(queue=actx.queue)
    ball_centers = np.array([actx.to_numpy(x) for x in ball_centers]).T
    ball_radii = actx.to_numpy(ball_radii)
    assert len(lbl.balls_near_box_starts) == tree.nboxes + 1

    from boxtree import box_flags_enum

Andreas Klöckner's avatar
Andreas Klöckner committed
    for ibox in range(tree.nboxes):
        # We only want leaves here.
        if tree.box_flags[ibox] & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES:
            continue

        box_center = tree.box_centers[:, ibox]
        ext_l, ext_h = tree.get_box_extent(ibox)
        box_rad = 0.5*(ext_h-ext_l)[0]

        linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
        near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)

        start, end = lbl.balls_near_box_starts[ibox:ibox+2]
        assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)

# }}}

Andreas Klöckner's avatar
Andreas Klöckner committed

def run_area_query_test(actx, tree, ball_centers, ball_radii):
    """
    Performs an area query and checks that the result is as expected.
    """
    from boxtree.area_query import AreaQueryBuilder
    aqb = AreaQueryBuilder(actx.context)
    area_query, _ = aqb(actx.queue, tree, ball_centers, ball_radii)
    tree = tree.get(queue=actx.queue)
    area_query = area_query.get(queue=actx.queue)
    ball_centers = np.array([actx.to_numpy(x) for x in ball_centers]).T
    ball_radii = actx.to_numpy(ball_radii)

    from boxtree import box_flags_enum
            tree.box_flags & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES == 0
            ).nonzero()

    leaf_box_radii = np.empty(len(leaf_boxes))
    dims = len(tree.sources)
    leaf_box_centers = np.empty((len(leaf_boxes), dims))

    for idx, leaf_box in enumerate(leaf_boxes):
        box_center = tree.box_centers[:, leaf_box]
        ext_l, ext_h = tree.get_box_extent(leaf_box)
        leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
        leaf_box_centers[idx] = box_center

    for ball_nr, (ball_center, ball_radius) \
            in enumerate(zip(ball_centers, ball_radii)):
        linf_box_dists = np.max(np.abs(ball_center - leaf_box_centers), axis=-1)
        near_leaves_indices, \
            = np.where(linf_box_dists < ball_radius + leaf_box_radii)
        near_leaves = leaf_boxes[near_leaves_indices]

        start, end = area_query.leaves_near_ball_starts[ball_nr:ball_nr+2]
        found = area_query.leaves_near_ball_lists[start:end]
        actual = near_leaves
        assert set(found) == set(actual), (found, actual)


@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query(actx_factory, dims, visualize=False):
    actx = actx_factory()

    nparticles = 10**5
    dtype = np.float64

    particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
    if visualize:
        import matplotlib.pyplot as pt
        np_particles = actx.to_numpy(particles)
        pt.plot(np_particles[0], np_particles[1], "x")

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    actx.queue.finish()
    tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)

    nballs = 10**4
    ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype)
    ball_radii = 0.1 + actx.np.zeros(nballs, dtype)
    run_area_query_test(actx, tree, ball_centers, ball_radii)


@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_balls_outside_bbox(actx_factory, dims, visualize=False):
    """
    The input to the area query includes balls whose centers are not within
    the tree bounding box.
    """
    actx = actx_factory()

    nparticles = 10**4
    dtype = np.float64

    particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
    if visualize:
        import matplotlib.pyplot as pt
        np_particles = actx.to_numpy(particles)
        pt.plot(np_particles[0], np_particles[1], "x")

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    actx.queue.finish()
    tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)

    nballs = 10**4
    bbox_min = tree.bounding_box[0].min()
    bbox_max = tree.bounding_box[1].max()
    from pytools.obj_array import make_obj_array
    rng = np.random.default_rng(13)
    ball_centers = make_obj_array([
        actx.from_numpy(
            rng.uniform(bbox_min - 1, bbox_max + 1, nballs).astype(dtype))
        for i in range(dims)])
    ball_radii = 0.1 + actx.np.zeros(nballs, dtype)
    run_area_query_test(actx, tree, ball_centers, ball_radii)
Matt Wala's avatar
Matt Wala committed

@pytest.mark.opencl
@pytest.mark.area_query
@pytest.mark.parametrize("dims", [2, 3])
def test_area_query_elwise(actx_factory, dims, visualize=False):
    actx = actx_factory()
Matt Wala's avatar
Matt Wala committed
    dtype = np.float64

    particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype)
    if visualize:
Matt Wala's avatar
Matt Wala committed
        import matplotlib.pyplot as pt
        np_particles = actx.to_numpy(particles)
        pt.plot(np_particles[0], np_particles[1], "x")
Matt Wala's avatar
Matt Wala committed

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    actx.queue.finish()
    tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True)
    ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype)
    ball_radii = 0.1 + actx.np.zeros(nballs, dtype)
Alexandru Fikl's avatar
Alexandru Fikl committed
    from boxtree.area_query import AreaQueryElementwiseTemplate, PeerListFinder

    template = AreaQueryElementwiseTemplate(
        extra_args="""
            coord_t *ball_radii,
            %for ax in AXIS_NAMES[:dimensions]:
                coord_t *ball_${ax},
            %endfor
        """,
        ball_center_and_radius_expr="""
            %for ax in AXIS_NAMES[:dimensions]:
                ${ball_center}.${ax} = ball_${ax}[${i}];
            %endfor
            ${ball_radius} = ball_radii[${i}];
        """,
        leaf_found_op="")

    peer_lists, evt = PeerListFinder(actx.context)(actx.queue, tree)

    kernel = template.generate(
        actx.context,
        dims,
        tree.coord_dtype,
        tree.box_id_dtype,
        peer_lists.peer_list_starts.dtype,
        tree.nlevels)

    evt = kernel(
        *template.unwrap_args(
            tree, peer_lists, ball_radii, *ball_centers),
        queue=actx.queue,
        range=slice(len(ball_radii)))
Matt Wala's avatar
Matt Wala committed
# {{{ level restriction test

@pytest.mark.opencl
@pytest.mark.parametrize("lookbehind", [0, 1])
@pytest.mark.parametrize("skip_prune", [True, False])
@pytest.mark.parametrize("dims", [2, 3])
def test_level_restriction(
        actx_factory, dims, skip_prune, lookbehind, visualize=False):
    actx = actx_factory()
Matt Wala's avatar
Matt Wala committed

    nparticles = 10**5
    dtype = np.float64

    from boxtree.tools import make_surface_particle_array
    particles = make_surface_particle_array(
            actx.queue, nparticles, dims, dtype, seed=15)
    if visualize:
Matt Wala's avatar
Matt Wala committed
        import matplotlib.pyplot as pt
        np_particles = actx.to_numpy(particles)
        pt.plot(np_particles[0], np_particles[1], "x")
Matt Wala's avatar
Matt Wala committed

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    actx.queue.finish()
    tree_dev, _ = tb(actx.queue, particles,
            kind="adaptive-level-restricted",
            max_particles_in_box=30, debug=True,
            skip_prune=skip_prune, lr_lookbehind=lookbehind,
            # Artificially low to exercise reallocation code
            nboxes_guess=10)
Matt Wala's avatar
Matt Wala committed

    def find_neighbors(leaf_box_centers, leaf_box_radii):
        # We use an area query with a ball that is slightly larger than
        # the size of a leaf box to find the neighboring leaves.
        #
        # Note that since this comes from an area query, the self box will be
        # included in the neighbor list.
        from boxtree.area_query import AreaQueryBuilder
        aqb = AreaQueryBuilder(actx.context)
        ball_radii = actx.from_numpy(np.min(leaf_box_radii) / 2 + leaf_box_radii)
        leaf_box_centers = [actx.from_numpy(axis) for axis in leaf_box_centers]
        area_query, _ = aqb(actx.queue, tree_dev, leaf_box_centers, ball_radii)
        area_query = area_query.get(queue=actx.queue)
Matt Wala's avatar
Matt Wala committed
        return (area_query.leaves_near_ball_starts,
                area_query.leaves_near_ball_lists)

    # Get data to host for test.
    tree = tree_dev.get(queue=actx.queue)
Matt Wala's avatar
Matt Wala committed

    # Find leaf boxes.
    from boxtree import box_flags_enum
            tree.box_flags & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES == 0
            ).nonzero()
Matt Wala's avatar
Matt Wala committed

    leaf_box_radii = np.empty(len(leaf_boxes))
    leaf_box_centers = np.empty((dims, len(leaf_boxes)))

    for idx, leaf_box in enumerate(leaf_boxes):
        box_center = tree.box_centers[:, leaf_box]
        ext_l, ext_h = tree.get_box_extent(leaf_box)
        leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5
        leaf_box_centers[:, idx] = box_center

    neighbor_starts, neighbor_and_self_lists = find_neighbors(
        leaf_box_centers, leaf_box_radii)

    # Check level restriction.
    for leaf_idx, leaf in enumerate(leaf_boxes):
        neighbors = neighbor_and_self_lists[
            neighbor_starts[leaf_idx]:neighbor_starts[leaf_idx+1]]
        neighbor_levels = np.array(tree.box_levels[neighbors], dtype=int)
        leaf_level = int(tree.box_levels[leaf])
        assert np.all(np.abs(neighbor_levels - leaf_level) <= 1), \
Matt Wala's avatar
Matt Wala committed
                (neighbor_levels, leaf_level)

# }}}


Matt Wala's avatar
Matt Wala committed
# {{{ space invader query test

@pytest.mark.opencl
@pytest.mark.geo_lookup
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("dims", [2, 3])
def test_space_invader_query(actx_factory, dims, dtype, visualize=False):
    actx = actx_factory()