Newer
Older
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import sys
import pytools.test
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
Andreas Klöckner
committed
def make_particle_array(queue, nparticles, dims, dtype, seed=15):
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=seed)
from pytools.obj_array import make_obj_array
return make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
# {{{ bounding box test
def test_bounding_box(ctx_getter):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import AXIS_NAMES
from boxtree.bounding_box import BoundingBoxFinder
bbf = BoundingBoxFinder(ctx)
#for dtype in [np.float32, np.float64]:
for dtype in [np.float64, np.float32]:
for dims in [2, 3]:
axis_names = AXIS_NAMES[:dims]
for nparticles in [9, 4096, 10**5]:
print dtype, dims, nparticles
particles = make_particle_array(queue, nparticles, dims, dtype)
bbox_min = [np.min(x.get()) for x in particles]
bbox_max = [np.max(x.get()) for x in particles]
bbox_cl = bbf(particles).get()
bbox_min_cl = np.empty(dims, dtype)
bbox_max_cl = np.empty(dims, dtype)
for i, ax in enumerate(axis_names):
bbox_min_cl[i] = bbox_cl["min_"+ax]
bbox_max_cl[i] = bbox_cl["max_"+ax]
assert (bbox_min == bbox_min_cl).all()
assert (bbox_max == bbox_max_cl).all()
# }}}
# {{{ basic tree build test
def run_build_test(builder, queue, dims, dtype, nparticles, do_plot, max_particles_in_box=30, **kwargs):
if dtype == np.float32:
tol = 1e-4
elif dtype == np.float64:
tol = 1e-12
else:
raise RuntimeError("unsupported dtype: %s" % dtype)
print "%dD %s - %d particles - max %d per box - %s" % (
dims, dtype.type.__name__, nparticles, max_particles_in_box,
" - ".join("%s: %s" % (k, v) for k, v in kwargs.iteritems()))
print 75*"-"
particles = make_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
queue.finish()
print "building..."
tree = builder(queue, particles,
max_particles_in_box=max_particles_in_box, debug=True,
print "%d boxes, testing..." % tree.nboxes
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.user_source_ids]).all()
if do_plot:
from boxtree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
from boxtree import box_flags_enum as bfe
BOX_NONEMPTY = bfe.HAS_SOURCES | bfe.HAS_TARGETS
scaled_tol = tol*tree.root_extent
# Empty boxes exist in non-pruned trees--which themselves are undocumented.
# These boxes will fail these tests.
if not (tree.box_flags[ibox] & BOX_NONEMPTY):
continue
extent_low, extent_high = tree.get_box_extent(ibox)
if extent_low[0] == extent_low[1]:
print "ZERO", ibox, tree.box_centers[:, ibox]
1/0
assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), (
ibox, extent_low, tree.bounding_box[0])
assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), (
ibox, extent_high, tree.bounding_box[1])
start = tree.box_source_starts[ibox]
box_particles = sorted_particles[:,start:start+tree.box_source_counts[ibox]]
good = (
(box_particles < extent_high[:, np.newaxis] + scaled_tol)
(extent_low[:, np.newaxis] - scaled_tol <= box_particles)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
plotter.draw_box(ibox, edgecolor="red")
if not all_good_here:
print "BAD BOX", ibox
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
print "done"
@pytools.test.mark_test.opencl
def test_particle_tree(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
for dtype in [
#np.float64,
np.float32,
]:
for dims in [2, 3]:
# test single-box corner case
run_build_test(builder, queue, dims,
dtype, 4, do_plot=False)
# test bi-level corner case
run_build_test(builder, queue, dims,
dtype, 50, do_plot=False)
# test unpruned tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, skip_prune=True)
# exercise reallocation code
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, nboxes_guess=5)
# test many empty leaves corner case
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, max_particles_in_box=5)
# test vanilla tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot)
Andreas Klöckner
committed
@pytools.test.mark_test.opencl
def test_source_target_tree(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2, 3]:
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
sources = make_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_particle_array(queue, ntargets, dims, dtype,
seed=19)
if do_plot:
import matplotlib.pyplot as pt
Andreas Klöckner
committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True).get()
print "%d boxes, testing..." % tree.nboxes
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
all_good_so_far = True
if do_plot:
from boxtree import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
for ibox in xrange(tree.nboxes):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
for what, particles in [
("sources", sorted_sources[:,src_start:src_start+tree.box_source_counts[ibox]]),
("targets", sorted_targets[:,tgt_start:tgt_start+tree.box_target_counts[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= particles)
).all(axis=0)
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
plotter.draw_box(ibox, edgecolor="red")
pt.show()
if not all_good_here:
print "BAD BOX %s %d" % (what, ibox)
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
print "done"
# }}}
# {{{ connectivity test
def test_tree_connectivity(ctx_getter):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
print "traversal built"
levels = tree.box_levels.get()
parents = tree.box_parent_ids.get().T
children = tree.box_child_ids.get().T
centers = tree.box_centers.get().T
# {{{ parent and child relations, levels match up
for ibox in xrange(1, tree.nboxes):
# /!\ Not testing box 0, has no parents
parent = parents[ibox]
assert levels[parent] + 1 == levels[ibox]
assert ibox in children[parent], ibox
import matplotlib.pyplot as pt
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.show()
# {{{ neighbor_leaves (list 1) consists of leaves
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.neighbor_leaves_starts[ileaf:ileaf+2]
nbl = trav.neighbor_leaves_lists[start:end]
assert ibox in nbl
for jbox in nbl:
assert (0 == children[jbox]).all()
print "list 1 tested"
# }}}
# {{{ separated siblings (list 2) are actually separated
for ibox in xrange(tree.nboxes):
start, end = trav.sep_siblings_starts[ibox:ibox+2]
seps = trav.sep_siblings_lists[start:end]
assert (levels[seps] == levels[ibox]).all()
# three-ish box radii (half of size)
mindist = 2.5 * 0.5 * 2**-int(levels[ibox]) * tree.root_extent
icenter = centers[ibox]
for jbox in seps:
dist = la.norm(centers[jbox]-icenter)
assert dist > mindist, (dist, mindist)
# }}}
# {{{ sep_{smaller,bigger}_nonsiblings are duals of each other
# (technically, we only test one half of that)
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
rstart, rend = trav.sep_bigger_nonsiblings_starts[jbox:jbox+2]
assert ibox in trav.sep_bigger_nonsiblings_lists[rstart:rend], (ibox, jbox)
print "list 3, 4 are duals"
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ileaf, ibox in enumerate(trav.leaf_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[ileaf:ileaf+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
assert levels[ibox] < levels[jbox]
print "list 3 satisfies size assumption"
# }}}
# {{{ sep_smaller_nonsiblings satisfies size assumption
for ibox in xrange(tree.nboxes):
start, end = trav.sep_bigger_nonsiblings_starts[ibox:ibox+2]
for jbox in trav.sep_bigger_nonsiblings_lists[start:end]:
assert levels[ibox] > levels[jbox]
print "list 4 satisfies size assumption"
# }}}
# {{{ fmm interaction completeness test
class ConstantOneExpansionWrangler:
"""This implements the 'analytical routines' for a Green's function that is
constant 1 everywhere. For 'charges' of 'ones', this should get every particle
a copy of the particle count.
"""
def __init__(self, tree):
self.tree = tree
def expansion_zeros(self):
return np.zeros(self.tree.nboxes, dtype=np.float64)
def potential_zeros(self):
return np.zeros(self.tree.ntargets, dtype=np.float64)
def _get_source_slice(self, ibox):
pstart = self.tree.box_source_starts[ibox]
return slice(
pstart, pstart + self.tree.box_source_counts[ibox])
def _get_target_slice(self, ibox):
pstart = self.tree.box_target_starts[ibox]
return slice(
pstart, pstart + self.tree.box_target_counts[ibox])
def reorder_src_weights(self, src_weights):
return src_weights[self.tree.user_source_ids]
def reorder_potentials(self, potentials):
return potentials[self.tree.sorted_target_ids]
def form_multipoles(self, leaf_boxes, src_weights):
mpoles = self.expansion_zeros()
for ibox in leaf_boxes:
pslice = self._get_source_slice(ibox)
mpoles[ibox] += np.sum(src_weights[pslice])
return mpoles
Andreas Klöckner
committed
def coarsen_multipoles(self, parent_boxes, start_parent_box, end_parent_box,
mpoles):
tree = self.tree
Andreas Klöckner
committed
for ibox in parent_boxes[start_parent_box:end_parent_box]:
for child in tree.box_child_ids[:, ibox]:
if child:
mpoles[ibox] += mpoles[child]
def eval_direct(self, leaf_boxes, neighbor_leaves_starts, neighbor_leaves_lists,
src_weights):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_target_slice(itgt_box)
src_sum = 0
start, end = neighbor_leaves_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in neighbor_leaves_lists[start:end]:
src_pslice = self._get_source_slice(isrc_box)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
src_sum += np.sum(src_weights[src_pslice])
pot[tgt_pslice] = src_sum
return pot
def multipole_to_local(self, starts, lists, mpole_exps):
local_exps = self.expansion_zeros()
for itgt_box in xrange(self.tree.nboxes):
start, end = starts[itgt_box:itgt_box+2]
contrib = 0
#print itgt_box, "<-", lists[start:end]
for isrc_box in lists[start:end]:
contrib += mpole_exps[isrc_box]
local_exps[itgt_box] += contrib
return local_exps
def eval_multipoles(self, leaf_boxes, sep_smaller_nonsiblings_starts,
sep_smaller_nonsiblings_lists, mpole_exps):
pot = self.potential_zeros()
for itgt_leaf, itgt_box in enumerate(leaf_boxes):
tgt_pslice = self._get_target_slice(itgt_box)
contrib = 0
start, end = sep_smaller_nonsiblings_starts[itgt_leaf:itgt_leaf+2]
for isrc_box in sep_smaller_nonsiblings_lists[start:end]:
contrib += mpole_exps[isrc_box]
pot[tgt_pslice] += contrib
return pot
def refine_locals(self, start_box, end_box, local_exps):
for ibox in xrange(start_box, end_box):
local_exps[ibox] += local_exps[self.tree.box_parent_ids[ibox]]
return local_exps
def eval_locals(self, leaf_boxes, local_exps):
pot = self.potential_zeros()
for ibox in leaf_boxes:
tgt_pslice = self._get_target_slice(ibox)
pot[tgt_pslice] += local_exps[ibox]
return pot
@pytools.test.mark_test.opencl
def test_fmm_completeness(ctx_getter):
"""Tests whether the built FMM traversal structures and driver completely
capture all interactions.
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2]:
nparticles = 10**6
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
tb = TreeBuilder(ctx)
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "tree built"
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
print "traversal built"
weights = np.random.randn(nparticles)
#weights = np.ones(nparticles)
weights_sum = np.sum(weights)
wrangler = ConstantOneExpansionWrangler(trav.tree)
assert (wrangler.reorder_potentials(
wrangler.reorder_src_weights(weights)) == weights).all()
pot = drive_fmm(trav, wrangler, weights)
# {{{ build, evaluate matrix (and identify missing interactions)
if 0:
mat = np.zeros((nparticles, nparticles), dtype)
from pytools import ProgressBar
pb = ProgressBar("matrix", nparticles)
for i in xrange(nparticles):
unit_vec = np.zeros(nparticles, dtype=dtype)
unit_vec[i] = 1
mat[:,i] = drive_fmm(trav, wrangler, unit_vec)
pb.progress()
pb.finished()
missing_tgts, missing_srcs = np.where(mat == 0)
if len(missing_tgts):
import matplotlib.pyplot as pt
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
for tgt, src in zip(missing_tgts, missing_srcs):
pt.plot(
trav.tree.particles[0][tgt],
trav.tree.particles[1][tgt],
"ro")
pt.plot(
trav.tree.particles[0][src],
trav.tree.particles[1][src],
"go")
pt.show()
#pt.spy(mat)
#pt.show()
# }}}
assert la.norm((pot - weights_sum) / nparticles) < 1e-8
# {{{ geometry query test
def test_geometry_query(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dims = 2
nparticles = 10**5
dtype = np.float64
particles = make_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "%d boxes, testing..." % tree.nboxes
nballs = 10**4
ball_centers = make_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.geo_lookup import LeavesToBallsLookupBuilder
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
lblb = LeavesToBallsLookupBuilder(ctx)
lbl = lblb(queue, tree, ball_centers, ball_radii)
# get data to host for test
tree = tree.get()
lbl = lbl.get()
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
for ibox in xrange(tree.nboxes):
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
#print sorted(lbl.balls_near_box_lists[start:end])
#print sorted(near_circles)
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# {{{ visualization helper (not a test)
def plot_traversal(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
nparticles = 10**4
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
#if do_plot:
#pt.plot(particles[0].get(), particles[1].get(), "x")
tb = TreeBuilder(ctx)
queue.finish()
print "building..."
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
print "done"
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
#plotter.draw_box_numbers()
plotter.set_bounding_box()
from random import randrange, seed
# {{{ generic box drawing helper
def draw_some_box_lists(starts, lists, key_to_box=None,
count=5):
actual_count = 0
while actual_count < count:
if key_to_box is not None:
key = randrange(len(key_to_box))
ibox = key_to_box[key]
else:
key = ibox = randrange(tree.nboxes)
start, end = starts[key:key+2]
if start == end:
continue
#print ibox, start, end, lists[start:end]
for jbox in lists[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
plotter.draw_box(ibox, facecolor='red')
if 0:
# colleagues
draw_some_box_lists(
trav.colleagues_starts,
trav.colleagues_lists)
elif 0:
# near neighbors ("list 1")
draw_some_box_lists(
trav.neighbor_leaves_starts,
trav.neighbor_leaves_lists,
key_to_box=trav.leaf_boxes)
elif 0:
# well-separated siblings (list 2)
draw_some_box_lists(
trav.sep_siblings_starts,
trav.sep_siblings_lists)
elif 1:
# separated smaller non-siblings (list 3)
draw_some_box_lists(
trav.sep_smaller_nonsiblings_starts,
trav.sep_smaller_nonsiblings_lists,
key_to_box=trav.leaf_boxes)
elif 1:
# separated bigger non-siblings (list 4)
draw_some_box_lists(
trav.sep_bigger_nonsiblings_starts,
trav.sep_bigger_nonsiblings_lists)
import matplotlib.pyplot as pt
# You can test individual routines by typing
# $ python test_kernels.py 'test_p2p(cl.create_some_context)'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker