Newer
Older
import math
import sys
import operator
import types
from pytools.decorator import decorator
Andreas Klöckner
committed
Andreas Klöckner
committed
def delta(x,y):
if x == y:
return 1
else:
return 0
Andreas Klöckner
committed
# Data structures ------------------------------------------------------------
class Reference(object):
def __init__( self, value ):
self.V = value
def get( self ):
return self.V
def set( self, value ):
self.V = value
Andreas Klöckner
committed
def _getattr_(obj, name, default_thunk):
"Similar to .setdefault in dictionaries."
try:
return getattr(obj, name)
except AttributeError:
default = default_thunk()
setattr(obj, name, default)
return default
@decorator
def memoize(func, *args):
# by Michele Simionato
# http://www.phyast.pitt.edu/~micheles/python/
Andreas Klöckner
committed
dic = _getattr_(func, "memoize_dic", dict)
# memoize_dic is created at the first call
if args in dic:
return dic[args]
else:
result = func(*args)
dic[args] = result
return result
FunctionValueCache = memoize
Andreas Klöckner
committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
class DictionaryWithDefault(object):
def __init__(self, default_value_generator, start = {}):
self._Dictionary = dict(start)
self._DefaultGenerator = default_value_generator
def __getitem__(self, index):
try:
return self._Dictionary[index]
except KeyError:
value = self._DefaultGenerator(index)
self._Dictionary[index] = value
return value
def __setitem__(self, index, value):
self._Dictionary[index] = value
def __contains__(self, item):
return True
def iterkeys(self):
return self._Dictionary.iterkeys()
def __iter__(self):
return self._Dictionary.__iter__()
def iteritems(self):
return self._Dictionary.iteritems()
class FakeList(object):
def __init__(self, f, length):
self._Length = length
self._Function = f
def __len__(self):
return self._Length
def __getitem__(self, index):
try:
return [self._Function(i)
for i in range(*index.indices(self._Length))]
except AttributeError:
return self._Function(index)
class DependentDictionary(object):
def __init__(self, f, start = {}):
self._Function = f
self._Dictionary = start.copy()
def copy(self):
return DependentDictionary(self._Function, self._Dictionary)
def __contains__(self, key):
try:
self[key]
return True
except KeyError:
return False
def __getitem__(self, key):
try:
return self._Dictionary[key]
except KeyError:
return self._Function(self._Dictionary, key)
def __setitem__(self, key, value):
self._Dictionary[key] = value
def genuineKeys(self):
return self._Dictionary.keys()
def iteritems(self):
return self._Dictionary.iteritems()
def iterkeys(self):
return self._Dictionary.iterkeys()
def itervalues(self):
return self._Dictionary.itervalues()
def add_tuples(t1, t2):
return tuple([t1v + t2v for t1v, t2v in zip(t1, t2)])
def negate_tuple(t1):
return tuple([-t1v for t1v in t1])
def write_1d_gnuplot_graph(f, a, b, steps=100, fname=",,f.data", progress = False):
h = float(b - a)/steps
gnuplot_file = file(fname, "w")
def do_plot(func):
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
gnuplot_file.write("%f\t%f\n" % (x, func(x)))
do_plot(f)
if progress:
sys.stdout.write("\n")
def write_1d_gnuplot_graphs(f, a, b, steps=100, fnames=None, progress=False):
h = float(b - a)/steps
if not fnames:
result_count = len(f(a))
fnames = [",,f%d.data" % i for i in range(result_count)]
gnuplot_files = [file(fname, "w") for fname in fnames]
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
for gpfile, y in zip(gnuplot_files, f(x)):
gpfile.write("%f\t%f\n" % (x, y))
if progress:
sys.stdout.write("\n")
Andreas Tester
committed
def write_2d_gnuplot_graph(f, (x0, y0), (x1, y1), (xsteps, ysteps)=(100, 100), fname=",,f.data"):
hx = float(x1 - x0)/xsteps
hy = float(y1 - y0)/ysteps
gnuplot_file = file(fname, "w")
for ny in range(ysteps):
for nx in range(xsteps):
x = x0 + hx * nx
y = y0 + hy * ny
gnuplot_file.write("%g\t%g\t%g\n" % (x, y, f(x, y)))
gnuplot_file.write("\n")
Andreas Klöckner
committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
def write_gnuplot_graph(f, a, b, steps = 100, fname = ",,f.data", progress = False):
h = float(b - a)/steps
gnuplot_file = file(fname, "w")
def do_plot(func):
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
gnuplot_file.write("%f\t%f\n" % (x, func(x)))
if isinstance(f, types.ListType):
for f_index, real_f in enumerate(f):
if progress:
sys.stdout.write("function %d: " % f_index)
do_plot(real_f)
gnuplot_file.write("\n")
if progress:
sys.stdout.write("\n")
else:
do_plot(f)
if progress:
sys.stdout.write("\n")
# Generic utilities ----------------------------------------------------------
def flatten(list):
result = []
for i in list:
result += i
return result
def sum_over(function, arguments):
raise RuntimeError, "Horribly inefficient routine called."
# wherever this is used, it should be replaced by sum() and a generator
# expression.
Andreas Klöckner
committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
result = 0
for i in arguments:
result += function(i)
return result
def general_sum(sequence):
return reduce(operator.add, sequence)
def linear_combination(coefficients, vectors):
result = coefficients[0] * vectors[0]
for c,v in zip(coefficients, vectors)[1:]:
result += c*v
return result
def average(sequence):
return general_sum(sequence)/float(len(sequence))
def all_equal(sequence):
item = sequence[0]
for i in sequence[1:]:
if i != item:
return False
return True
def decorate(function, list):
return map(lambda x: (x, function(x)), list)
def partition(criterion, list):
part_true = []
part_false = []
for i in list:
if criterion(i):
part_true.append(i)
else:
part_false.append(i)
return part_true, part_false
def product(list):
return reduce(lambda x,y: x*y, list, 1)
def argmin_f(list, f = lambda x: x):
# deprecated -- the function has become unnecessary because of
# generator expressions
Andreas Klöckner
committed
current_min_index = -1
current_min = f(list[0])
for idx, item in enumerate(list[1:]):
value = f(item)
if value < current_min:
current_min_index = idx
current_min = value
return current_min_index+1
def argmax_f(list, f = lambda x: x):
# deprecated -- the function has become unnecessary because of
# generator expressions
Andreas Klöckner
committed
current_max_index = -1
current_max = f(list[0])
for idx, item in enumerate(list[1:]):
value = f(item)
if value > current_max:
current_max_index = idx
current_max = value
return current_max_index+1
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
def argmin(list):
current_min_index = -1
it = list.__iter__()
current_min = it.next()
for idx, item in enumerate(it):
value = item
if value < current_min:
current_min_index = idx
current_min = value
return current_min_index+1
def argmax(list):
it = list.__iter__()
current_max = it.next()
for idx, item in enumerate(it):
value = item
if value > current_max:
current_max_index = idx
current_max = value
return current_max_index+1
Andreas Klöckner
committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def cartesian_product(list1, list2):
result = []
for i in list1:
for j in list2:
result.append((i,j))
def cartesian_product_sum(list1, list2):
"""This routine returns a list of sums of each element of
list1 with each element of list2. Also works with lists.
"""
result = []
for i in list1:
for j in list2:
result.append(i+j)
return result
def reverse_dictionary(the_dict):
result = {}
for key, value in the_dict.iteritems():
if value in result:
raise RuntimeError, "non-reversible mapping"
result[value] = key
return result
def generate_positive_integer_tuples_below(n, length, least = 0):
assert length >= 0
if length == 0:
yield []
else:
for i in range(least, n):
for base in generate_positive_integer_tuples_below(n, length-1, least):
yield [i] + base
def generate_all_positive_integer_tuples(length, least = 0):
assert length >= 0
current_max = least
while True:
for max_pos in range(length):
for prebase in generate_positive_integer_tuples_below(current_max, max_pos, least):
for postbase in generate_positive_integer_tuples_below(current_max+1, length-max_pos-1, least):
yield prebase + [current_max] + postbase
current_max += 1
def _pos_and_neg_adaptor(tuple_iter):
for tup in tuple_iter:
nonzero_indices = [i for i in range(len(tup)) if tup[i] != 0]
for do_neg_tup in generate_positive_integer_tuples_below(2, len(nonzero_indices)):
this_result = list(tup)
for index, do_neg in enumerate(do_neg_tup):
if do_neg:
this_result[nonzero_indices[index]] *= -1
yield tuple(this_result)
def generate_all_integer_tuples_below(n, length, least_abs = 0):
return _pos_and_neg_adaptor(generate_positive_integer_tuples_below(
n, length, least_abs))
def generate_all_integer_tuples(length, least_abs = 0):
return _pos_and_neg_adaptor(generate_all_positive_integer_tuples(
length, least_abs))
def generate_permutations(original):
"""Generate all permutations of the list `original'.
Nicked from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/252178
"""
if len(original) <=1:
yield original
else:
for perm in generate_permutations(original[1:]):
for i in range(len(perm)+1):
#nb str[0:1] works in both string and list contexts
yield perm[:i] + original[0:1] + perm[i:]
Andreas Klöckner
committed
# Obscure stuff --------------------------------------------------------------
def enumerate_basic_directions(dimensions):
coordinate_list = [[0], [1], [-1]]
return reduce(cartesian_product_sum, [coordinate_list] * dimensions)[1:]