Skip to content
__init__.py 13.8 KiB
Newer Older
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528




# Data structures ------------------------------------------------------------
class Reference(object):
    def __init__( self, value ):
        self.V = value
    def get( self ):
        return self.V
    def set( self, value ):
        self.V = value




class FunctionValueCache(object):
    def __init__(self, function):
        self.Function = function
        self.ResultMap = {}

    def __call__(self, arg):
        try:
            return self.ResultMap[arg]
        except KeyError:
            result = self.Function(arg)
            self.ResultMap[arg] = result
            return result

    


class DictionaryWithDefault(object):
    def __init__(self, default_value_generator, start = {}):
        self._Dictionary = dict(start)
        self._DefaultGenerator = default_value_generator

    def __getitem__(self, index):
        try:
            return self._Dictionary[index]
        except KeyError:
            value = self._DefaultGenerator(index)
            self._Dictionary[index] = value
            return value

    def __setitem__(self, index, value):
        self._Dictionary[index] = value

    def __contains__(self, item):
        return True

    def iterkeys(self):
        return self._Dictionary.iterkeys()

    def __iter__(self):
        return self._Dictionary.__iter__()

    def iteritems(self):
        return self._Dictionary.iteritems()


    
class FakeList(object):
    def __init__(self, f, length):
        self._Length = length
        self._Function = f

    def __len__(self):
        return self._Length

    def __getitem__(self, index):
        try:
            return [self._Function(i)
                    for i in range(*index.indices(self._Length))]
        except AttributeError:
            return self._Function(index)




class DependentDictionary(object):
    def __init__(self, f, start = {}):
        self._Function = f
        self._Dictionary = start.copy()

    def copy(self):
        return DependentDictionary(self._Function, self._Dictionary)

    def __contains__(self, key):
        try:
            self[key]
            return True
        except KeyError:
            return False

    def __getitem__(self, key):
        try:
            return self._Dictionary[key]
        except KeyError:
            return self._Function(self._Dictionary, key)

    def __setitem__(self, key, value):
        self._Dictionary[key] = value
    
    def genuineKeys(self):
        return self._Dictionary.keys()

    def iteritems(self):
        return self._Dictionary.iteritems()

    def iterkeys(self):
        return self._Dictionary.iterkeys()

    def itervalues(self):
        return self._Dictionary.itervalues()




def add_tuples(t1, t2):
    return tuple([t1v + t2v for t1v, t2v in zip(t1, t2)])

def negate_tuple(t1):
    return tuple([-t1v for t1v in t1])





def write_1d_gnuplot_graph(f, a, b, steps=100, fname=",,f.data", progress = False):
    h = float(b - a)/steps
    gnuplot_file = file(fname, "w")

    def do_plot(func):
        for n in range(steps):
            if progress:
                sys.stdout.write(".")
                sys.stdout.flush()
            x = a + h * n
            gnuplot_file.write("%f\t%f\n" % (x, func(x)))

    do_plot(f)
    if progress:
        sys.stdout.write("\n")

def write_1d_gnuplot_graphs(f, a, b, steps=100, fnames=None, progress=False):
    h = float(b - a)/steps
    if not fnames:
        result_count = len(f(a))
        fnames = [",,f%d.data" % i for i in range(result_count)]

    gnuplot_files = [file(fname, "w") for fname in fnames]

    for n in range(steps):
        if progress:
            sys.stdout.write(".")
            sys.stdout.flush()
        x = a + h * n
        for gpfile, y in zip(gnuplot_files, f(x)):
            gpfile.write("%f\t%f\n" % (x, y))
    if progress:
        sys.stdout.write("\n")



def write_gnuplot_graph(f, a, b, steps = 100, fname = ",,f.data", progress = False):
    h = float(b - a)/steps
    gnuplot_file = file(fname, "w")

    def do_plot(func):
        for n in range(steps):
            if progress:
                sys.stdout.write(".")
                sys.stdout.flush()
            x = a + h * n
            gnuplot_file.write("%f\t%f\n" % (x, func(x)))

    if isinstance(f, types.ListType):
        for f_index, real_f in enumerate(f):
            if progress:
                sys.stdout.write("function %d: " % f_index)
            do_plot(real_f)
            gnuplot_file.write("\n")
            if progress:
                sys.stdout.write("\n")
    else:
        do_plot(f)
        if progress:
            sys.stdout.write("\n")




class DictionaryOfArithmeticTypes(dict):
    """Allows arithmetic operations on dictionaries
    which propagate to its elements.
    """

    def _get_empty_self(self):
        return DictionaryOfArithmeticTypes()

    def assert_same_keys(self, other):
        for key in self:
            assert key in other
        for key in other:
            assert key in self

    def unary_operator(self, operator):
        result = self._get_empty_self()
        for key in self:
            result[key] = operator(self[key])
        return result

    def binary_operator(self, other, operator):
        try:
            self.assert_same_keys(other)
            result = self._get_empty_self()
            for key in self:
                result[key] = operator(self[key], other[key])
            return result
        except TypeError:
            result = self._get_empty_self()
            for key in self:
                result[key] = operator(self[key], other)
            return result

    def reverse_binary_operator(self, other, operator):
        try:
            self.assert_same_keys(other)
            result = self._get_empty_self()
            for key in self:
                result[key] = operator(other[key], self[key])
            return result
        except TypeError:
            result = self._get_empty_self()
            for key in self:
                result[key] = operator(other, self[key])
            return result

    def __neg__(self): return self.unary_operator(operator.neg)
    def __pos__(self): return self.unary_operator(operator.pos)
    def __abs__(self): return self.unary_operator(operator.abs)
    def __invert__(self): return self.unary_operator(operator.invert)

    def __add__(self, other): return self.binary_operator(other, operator.add)
    def __sub__(self, other): return self.binary_operator(other, operator.sub)
    def __mul__(self, other): return self.binary_operator(other, operator.mul)
    def __div__(self, other): return self.binary_operator(other, operator.div)
    def __mod__(self, other): return self.binary_operator(other, operator.mod)
    def __pow__(self, other): return self.binary_operator(other, operator.pow)
    def __lshift__(self, other): return self.binary_operator(other, operator.lshift)
    def __rshift__(self, other): return self.binary_operator(other, operator.rshift)
    def __and__(self, other): return self.binary_operator(other, operator.and_)
    def __or__(self, other): return self.binary_operator(other, operator.or_)
    def __xor__(self, other): return self.binary_operator(other, operator.xor)

    def __radd__(self, other): return self.reverse_binary_operator(other, operator.add)
    def __rsub__(self, other): return self.reverse_binary_operator(other, operator.sub)
    def __rmul__(self, other): return self.reverse_binary_operator(other, operator.mul)
    def __rdiv__(self, other): return self.reverse_binary_operator(other, operator.div)
    def __rmod__(self, other): return self.reverse_binary_operator(other, operator.mod)
    def __rpow__(self, other): return self.reverse_binary_operator(other, operator.pow)
    def __rlshift__(self, other): return self.reverse_binary_operator(other, operator.lshift)
    def __rrshift__(self, other): return self.reverse_binary_operator(other, operator.rshift)
    def __rand__(self, other): return self.reverse_binary_operator(other, operator.and_)
    def __ror__(self, other): return self.reverse_binary_operator(other, operator.or_)
    def __rxor__(self, other): return self.reverse_binary_operator(other, operator.xor)

    def __iadd__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] += other[key]
        return self

    def __isub__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] -= other[key]
        return self

    def __imul__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] *= other[key]
        return self

    def __idiv__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] /= other[key]
        return self

    def __imod__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] %= other[key]
        return self

    def __ipow__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] **= other[key]
        return self

    def __ilshift__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] <<= other[key]
        return self

    def __irshift__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] >>= other[key]
        return self

    def __iand__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] &= other[key]
        return self

    def __ior__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] |= other[key]
        return self

    def __ixor__(self, other): 
        self.assert_same_keys(other)
        for key in self: 
            self[key] ^= other[key]
        return self



# Generic utilities ----------------------------------------------------------
def flatten(list):
    result = []
    for i in list:
        result += i
    return result




def sum_over(function, arguments):
    result = 0
    for i in arguments:
        result += function(i)
    return result




def general_sum(sequence):
    return reduce(operator.add, sequence)




def linear_combination(coefficients, vectors):
    result = coefficients[0] * vectors[0]
    for c,v in zip(coefficients, vectors)[1:]:
        result += c*v
    return result




def average(sequence):
    return general_sum(sequence)/float(len(sequence))



def all_equal(sequence):
    item = sequence[0]
    for i in sequence[1:]:
        if i != item:
            return False
    return True




def decorate(function, list):
    return map(lambda x: (x, function(x)), list)




def partition(criterion, list):
    part_true = []
    part_false = []
    for i in list:
        if criterion(i):
            part_true.append(i)
        else:
            part_false.append(i)
    return part_true, part_false




def product(list):
    return reduce(lambda x,y: x*y, list, 1)




def argmin(list, f = lambda x: x):
    current_min_index = -1
    current_min = f(list[0])

    for idx, item in enumerate(list[1:]):
        value = f(item)
        if value < current_min:
            current_min_index = idx
            current_min = value
    return current_min_index+1




def argmax(list, f = lambda x: x):
    current_max_index = -1
    current_max = f(list[0])

    for idx, item in enumerate(list[1:]):
        value = f(item)
        if value > current_max:
            current_max_index = idx
            current_max = value
    return current_max_index+1




def cartesian_product(list1, list2):
    result = []
    for i in list1:
        for j in list2:
            result.append((i,j))




def cartesian_product_sum(list1, list2):
    """This routine returns a list of sums of each element of
    list1 with each element of list2. Also works with lists.
    """
    result = []
    for i in list1:
        for j in list2:
            result.append(i+j)
    return result




def reverse_dictionary(the_dict):
    result = {}
    for key, value in the_dict.iteritems():
        if value in result:
            raise RuntimeError, "non-reversible mapping"
        result[value] = key
    return result




def generate_positive_integer_tuples_below(n, length, least = 0):
    assert length >= 0
    if length == 0:
        yield []
    else:
        for i in range(least, n):
            for base in generate_positive_integer_tuples_below(n, length-1, least):
                yield [i] + base

def generate_all_positive_integer_tuples(length, least = 0):
    assert length >= 0
    current_max = least
    while True:
        for max_pos in range(length):
            for prebase in generate_positive_integer_tuples_below(current_max, max_pos, least):
                for postbase in generate_positive_integer_tuples_below(current_max+1, length-max_pos-1, least):
                    yield prebase + [current_max] + postbase
        current_max += 1

def _pos_and_neg_adaptor(tuple_iter):
    for tup in tuple_iter:
        nonzero_indices = [i for i in range(len(tup)) if tup[i] != 0]
        for do_neg_tup in generate_positive_integer_tuples_below(2, len(nonzero_indices)):
            this_result = list(tup)
            for index, do_neg in enumerate(do_neg_tup):
                if do_neg:
                    this_result[nonzero_indices[index]] *= -1
            yield tuple(this_result)

def generate_all_integer_tuples_below(n, length, least_abs = 0):
    return _pos_and_neg_adaptor(generate_positive_integer_tuples_below(
        n, length, least_abs))

def generate_all_integer_tuples(length, least_abs = 0):
    return _pos_and_neg_adaptor(generate_all_positive_integer_tuples(
        length, least_abs))
            



# Obscure stuff --------------------------------------------------------------
def enumerate_basic_directions(dimensions):
    coordinate_list = [[0], [1], [-1]]
    return reduce(cartesian_product_sum, [coordinate_list] * dimensions)[1:]