Newer
Older
Andreas Klöckner
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
import math, sys, operator, types
import pylinear.array as num
import pylinear.linear_algebra as la
import pylinear.operation as op
import pylinear.toybox as toybox
delta = toybox.delta
# Data structures ------------------------------------------------------------
class Reference(object):
def __init__( self, value ):
self.V = value
def get( self ):
return self.V
def set( self, value ):
self.V = value
class FunctionValueCache(object):
def __init__(self, function):
self.Function = function
self.ResultMap = {}
def __call__(self, arg):
try:
return self.ResultMap[arg]
except KeyError:
result = self.Function(arg)
self.ResultMap[arg] = result
return result
class LexicographicSequencer(object):
def __init__(self, container, limits):
self._Container = container
self._Dimensions = [high-low for low, high in limits]
self._Low = [low for low, high in limits]
def __len__(self):
return product(self._Dimensions)
def translate_single_index(self, index):
indices = []
remaining_size = len(self)
if not (0 <= index < remaining_size):
raise IndexError, "invalid subscript to sequencer object"
for i,sz in enumerate(self._Dimensions):
remaining_size /= sz
quotient, index = divmod(index, remaining_size)
indices.append(quotient + self._Low[i])
return tuple(indices)
def get_all_indices(self):
return [self.translate_single_index(i) for i in range(len(self))]
def __getitem__(self, index):
return self._Container[self.translate_single_index(index)]
class Grid(object):
def __init__(self, origin, grid_vectors):
self._Origin = origin
self._GridVectors = grid_vectors
def grid_vectors(self):
return self._GridVectors
def __getitem__(self, index):
result = self._Origin.copy()
for i, gv in zip(index, self._GridVectors):
result += i * gv
return result
def find_closest_grid_point_index(self, point):
tmat = num.array(self._GridVectors).T
float_coords = tmat <<num.solve>> (point - self._Origin)
return tuple([int(round(c)) for c in float_coords])
def interpolate_prid_point_index(self, point):
tmat = num.array(self._GridVectors).T
float_coords = tmat <<num.solve>> (point - self._Origin)
rounded_down_int_coords = [int(math.floor(c)) for c in float_coords]
neighbors = [rounded_down_int_coords]
for d in range(len(self._GridVectors)):
new_neighbors = []
for item in neighbors:
new_neighbors.append(item)
new_neighbor = item[:]
new_neighbor[d] += 1
new_neighbors.append(new_neighbor)
neighbors = new_neighbors
weights = []
for neighbor in neighbors:
weight = product([1-abs(a-b) for a,b in zip(float_coords, neighbor)])
if abs(weight) >= 1e-5:
weights.append((weight, tuple(neighbor)))
return weights
class FiniteGrid(Grid):
def __init__(self, origin, grid_vectors, limits):
"""Instantiates a finite grid. The limits are specified as a
list of tuples of (low, high) values, one for each grid vector.
For the index of a dimension, we assert, as is usual in Python:
low <= index < high,
such that there are (high-low) gridpoints and (high-low-1)
grid intervals
"""
assert len(grid_vectors) == len(limits)
Grid.__init__(self, origin, grid_vectors)
self._Limits = limits
def limits(self):
return self._Limits
def __iter__(self):
return iter(self.as_sequence().get_all_indices())
def iterkeys(self):
return self.__iter__()
def grid_point_counts(self):
"""Returns the number of grid intervals in each direction.
"""
return [high-low for low, high in self._Limits]
def grid_point_count(self):
"""Returns the number of grid intervals in each direction.
"""
return product(self.grid_point_counts())
def is_within_bounds(self, key):
for el, (low, high) in zip(key, self._Limits):
if not (low <= el < high):
return False
return True
def as_sequence(self):
return LexicographicSequencer(self, self._Limits)
def chop_upper_boundary(self, by = 1):
return FiniteGrid(self._Origin, self._GridVectors,
[(low, high-by) for low, high in self._Limits])
def chop_lower_boundary(self, by = 1):
return FiniteGrid(self._Origin, self._GridVectors,
[(low+by, high) for low, high in self._Limits])
def chop_both_boundaries(self, by = 1):
return FiniteGrid(self._Origin, self._GridVectors,
[(low+by, high-by) for low, high in self._Limits])
def enlarge_at_upper_boundary(self, by = 1):
return FiniteGrid(self._Origin, self._GridVectors,
[(low, high+by) for low, high in self._Limits])
def enlarge_at_lower_boundary(self, by = 1):
return FiniteGrid(self._Origin, self._GridVectors,
[(low-by, high) for low, high in self._Limits])
def enlarge_at_both_boundaries(self, by = 1):
return FiniteGrid(self._Origin, self._GridVectors,
[(low-by, high+by) for low, high in self._Limits])
def reduce_periodically(self, key):
return tuple([
el % (high-low) for el, (low, high) in zip(key, self._Limits)])
def reduce_to_closest(self, key):
return tuple([
max(min(high-1, el), low) for el, (low, high) in zip(key, self._Limits)])
def make_subdivision_grid(origin, grid_vectors, limits):
interval_counts = [high - low - 1 for low, high in limits]
my_gvs = [gv / float(ivs) for gv, ivs in zip(grid_vectors, interval_counts)]
return FiniteGrid(origin, my_gvs, limits)
def make_cell_centered_grid(origin, grid_vectors, limits):
my_gvs = [gv / float(high - low) for gv, (low, high) in zip(grid_vectors, limits)]
return FiniteGrid(origin + general_sum(my_gvs) * 0.5,
my_gvs, limits)
class DictionaryWithDefault(object):
def __init__(self, default_value_generator, start = {}):
self._Dictionary = dict(start)
self._DefaultGenerator = default_value_generator
def __getitem__(self, index):
try:
return self._Dictionary[index]
except KeyError:
value = self._DefaultGenerator(index)
self._Dictionary[index] = value
return value
def __setitem__(self, index, value):
self._Dictionary[index] = value
def __contains__(self, item):
return True
def iterkeys(self):
return self._Dictionary.iterkeys()
def __iter__(self):
return self._Dictionary.__iter__()
def iteritems(self):
return self._Dictionary.iteritems()
class FakeList(object):
def __init__(self, f, length):
self._Length = length
self._Function = f
def __len__(self):
return self._Length
def __getitem__(self, index):
try:
return [self._Function(i)
for i in range(*index.indices(self._Length))]
except AttributeError:
return self._Function(index)
class DependentDictionary(object):
def __init__(self, f, start = {}):
self._Function = f
self._Dictionary = start.copy()
def copy(self):
return DependentDictionary(self._Function, self._Dictionary)
def __contains__(self, key):
try:
self[key]
return True
except KeyError:
return False
def __getitem__(self, key):
try:
return self._Dictionary[key]
except KeyError:
return self._Function(self._Dictionary, key)
def __setitem__(self, key, value):
self._Dictionary[key] = value
def genuineKeys(self):
return self._Dictionary.keys()
def iteritems(self):
return self._Dictionary.iteritems()
def iterkeys(self):
return self._Dictionary.iterkeys()
def itervalues(self):
return self._Dictionary.itervalues()
def add_tuples(t1, t2):
return tuple([t1v + t2v for t1v, t2v in zip(t1, t2)])
def negate_tuple(t1):
return tuple([-t1v for t1v in t1])
# Numerical algorithms -------------------------------------------------------
def abs_squared(x):
return (x.conjugate() * x).real
def find_zero_by_newton(f, fprime, x_start, tolerance = 1e-12, maxit = 10):
it = 0
while it < maxit:
it += 1
f_value = f(x_start)
if math.fabs(f_value) < tolerance:
return x_start
x_start -= f_value / fprime(x_start)
raise RuntimeError, "Newton iteration failed, a zero was not found"
def find_vector_zero_by_newton(f, fprime, x_start, tolerance = 1e-12, maxit = 10):
it = 0
while it < maxit:
it += 1
f_value = f(x_start)
if op.norm_2(f_value) < tolerance:
return x_start
x_start -= num.matrixmultiply(la.inverse(fprime(x_start)), f_value)
raise RuntimeError, "Newton iteration failed, a zero was not found"
def distance_to_line(start_point, direction, point):
# Ansatz: start_point + alpha * direction
# <start_point + alpha * direction - point, direction> = 0!
alpha = - num.innerproduct(start_point - point, direction) / \
op.norm_2_squared(direction)
foot_point = start_point + alpha * direction
return op.norm_2(point - foot_point), alpha
def angle_cosine_between_vectors(vec1, vec2):
return vec1*vec2.H / (op.norm_2(vec1)*op.norm_2(vec2))
def interpolate_vector_list(vectors, inbetween_points):
if len(vectors) == 0:
return []
result = [vectors[0]]
last_vector = vectors[0]
for vector in vectors[1:]:
for i in range(inbetween_points):
result.append(last_vector + (vector-last_vector) \
* float(i+1) \
/ float(inbetween_points+1))
result.append(vector)
last_vector = vector
return result
def make_rotation_matrix(radians, n = 2, axis1 = 0, axis2 = 1, typecode = num.Float):
mat = num.identity(n, typecode)
mat[axis1,axis1] = math.cos(radians)
mat[axis2,axis1] = math.sin(radians)
mat[axis1,axis2] = -math.sin(radians)
mat[axis2,axis2] = math.cos(radians)
return mat
def get_parallelogram_volume(vectors):
if vectors[0].shape[0] == 2:
return vectors[0][0] * vectors[1][1] - vectors[1][0] * vectors[0][1]
else:
raise RuntimeError, "not implemented"
def unit_vector(i, dim, typecode = num.Float):
uvec = num.zeros((dim,), typecode)
uvec[i] = 1
return uvec
def conjugate(value):
try:
return value.conjugate()
except AttributeError:
return value
class SparseVector(DictionaryWithDefault):
def __init__(self):
DictionaryWithDefault.__init__(self, lambda x: 0.)
def add_to(self, other, factor = 1.):
for key in self:
other[key] += factor * self[key]
def add_to_matrix_column(self, matrix, column, factor = 1.):
for key in self:
matrix[key, column] += factor * self[key]
def add_to_matrix_row(self, matrix, row, factor = 1.):
for key in self:
matrix[row, key] += factor * self[key]
def conjugate(self):
result = SparseVector()
for key in self:
result[key] = (self[key]+0j).conjugate()
return result
def __radd__(self, other):
result = other.copy()
for key in self:
result[key] += self[key]
return result
def __add__(self, other):
result = other.copy()
for key in self:
result[key] += self[key]
return result
def __rsub__(self, other):
result = other.copy()
for key in self:
result[key] -= self[key]
return result
def __sub__(self, other):
result = other.copy()
for key in self:
result[key] = self[key] - result[key]
return result
def __mul__(self, other):
result = SparseVector()
for key in self:
result[key] = other * self[key]
return result
def __rmul__(self, other):
result = SparseVector()
for key in self:
result[key] = other * self[key]
return result
class LinearSystemOfEquations:
# UNTESTED.
def __init__(self):
self.Equations = []
self.SymbolMap = {}
pass
def register_equation(self, coeffs_and_symbols, rhs):
self.Equations.append(([
(coeff, self.SymbolMap.setdefault(symbol, len(self.SymbolMap)))
for coeff, symbol in coeffs_and_symbols], rhs))
def solve(self, typecode = num.Float):
m = num.zeros((len(self.Equations), len(self.SymbolMap)), typecode)
rhs = num.zeros((len(self.SymbolMap),), typecode)
for i, (eq, rhs) in enumerate(self.Equations):
for coeff, j in eq:
m[i,j] = coeff
rhs[i] = rhs
sol = la.solve_linear_equations(m, rhs)
result = {}
for sym, index in self.SymbolMap.iteritems():
result[sym] = sol[index]
return result
def write_1d_gnuplot_graph(f, a, b, steps=100, fname=",,f.data", progress = False):
h = float(b - a)/steps
gnuplot_file = file(fname, "w")
def do_plot(func):
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
gnuplot_file.write("%f\t%f\n" % (x, func(x)))
do_plot(f)
if progress:
sys.stdout.write("\n")
def write_1d_gnuplot_graphs(f, a, b, steps=100, fnames=None, progress=False):
h = float(b - a)/steps
if not fnames:
result_count = len(f(a))
fnames = [",,f%d.data" % i for i in range(result_count)]
gnuplot_files = [file(fname, "w") for fname in fnames]
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
for gpfile, y in zip(gnuplot_files, f(x)):
gpfile.write("%f\t%f\n" % (x, y))
if progress:
sys.stdout.write("\n")
def write_gnuplot_graph(f, a, b, steps = 100, fname = ",,f.data", progress = False):
h = float(b - a)/steps
gnuplot_file = file(fname, "w")
def do_plot(func):
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
gnuplot_file.write("%f\t%f\n" % (x, func(x)))
if isinstance(f, types.ListType):
for f_index, real_f in enumerate(f):
if progress:
sys.stdout.write("function %d: " % f_index)
do_plot(real_f)
gnuplot_file.write("\n")
if progress:
sys.stdout.write("\n")
else:
do_plot(f)
if progress:
sys.stdout.write("\n")
class DictionaryOfArithmeticTypes(dict):
"""Allows arithmetic operations on dictionaries
which propagate to its elements.
"""
def _get_empty_self(self):
return DictionaryOfArithmeticTypes()
def assert_same_keys(self, other):
for key in self:
assert key in other
for key in other:
assert key in self
def unary_operator(self, operator):
result = self._get_empty_self()
for key in self:
result[key] = operator(self[key])
return result
def binary_operator(self, other, operator):
try:
self.assert_same_keys(other)
result = self._get_empty_self()
for key in self:
result[key] = operator(self[key], other[key])
return result
except TypeError:
result = self._get_empty_self()
for key in self:
result[key] = operator(self[key], other)
return result
def reverse_binary_operator(self, other, operator):
try:
self.assert_same_keys(other)
result = self._get_empty_self()
for key in self:
result[key] = operator(other[key], self[key])
return result
except TypeError:
result = self._get_empty_self()
for key in self:
result[key] = operator(other, self[key])
return result
def __neg__(self): return self.unary_operator(operator.neg)
def __pos__(self): return self.unary_operator(operator.pos)
def __abs__(self): return self.unary_operator(operator.abs)
def __invert__(self): return self.unary_operator(operator.invert)
def __add__(self, other): return self.binary_operator(other, operator.add)
def __sub__(self, other): return self.binary_operator(other, operator.sub)
def __mul__(self, other): return self.binary_operator(other, operator.mul)
def __div__(self, other): return self.binary_operator(other, operator.div)
def __mod__(self, other): return self.binary_operator(other, operator.mod)
def __pow__(self, other): return self.binary_operator(other, operator.pow)
def __lshift__(self, other): return self.binary_operator(other, operator.lshift)
def __rshift__(self, other): return self.binary_operator(other, operator.rshift)
def __and__(self, other): return self.binary_operator(other, operator.and_)
def __or__(self, other): return self.binary_operator(other, operator.or_)
def __xor__(self, other): return self.binary_operator(other, operator.xor)
def __radd__(self, other): return self.reverse_binary_operator(other, operator.add)
def __rsub__(self, other): return self.reverse_binary_operator(other, operator.sub)
def __rmul__(self, other): return self.reverse_binary_operator(other, operator.mul)
def __rdiv__(self, other): return self.reverse_binary_operator(other, operator.div)
def __rmod__(self, other): return self.reverse_binary_operator(other, operator.mod)
def __rpow__(self, other): return self.reverse_binary_operator(other, operator.pow)
def __rlshift__(self, other): return self.reverse_binary_operator(other, operator.lshift)
def __rrshift__(self, other): return self.reverse_binary_operator(other, operator.rshift)
def __rand__(self, other): return self.reverse_binary_operator(other, operator.and_)
def __ror__(self, other): return self.reverse_binary_operator(other, operator.or_)
def __rxor__(self, other): return self.reverse_binary_operator(other, operator.xor)
def __iadd__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] += other[key]
return self
def __isub__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] -= other[key]
return self
def __imul__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] *= other[key]
return self
def __idiv__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] /= other[key]
return self
def __imod__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] %= other[key]
return self
def __ipow__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] **= other[key]
return self
def __ilshift__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] <<= other[key]
return self
def __irshift__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] >>= other[key]
return self
def __iand__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] &= other[key]
return self
def __ior__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] |= other[key]
return self
def __ixor__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] ^= other[key]
return self
# Generic utilities ----------------------------------------------------------
def flatten(list):
result = []
for i in list:
result += i
return result
def sum_over(function, arguments):
result = 0
for i in arguments:
result += function(i)
return result
def general_sum(sequence):
return reduce(operator.add, sequence)
def linear_combination(coefficients, vectors):
result = coefficients[0] * vectors[0]
for c,v in zip(coefficients, vectors)[1:]:
result += c*v
return result
def average(sequence):
return general_sum(sequence)/float(len(sequence))
def all_equal(sequence):
item = sequence[0]
for i in sequence[1:]:
if i != item:
return False
return True
def decorate(function, list):
return map(lambda x: (x, function(x)), list)
def partition(criterion, list):
part_true = []
part_false = []
for i in list:
if criterion(i):
part_true.append(i)
else:
part_false.append(i)
return part_true, part_false
def product(list):
return reduce(lambda x,y: x*y, list, 1)
def argmin(list, f = lambda x: x):
current_min_index = -1
current_min = f(list[0])
for idx, item in enumerate(list[1:]):
value = f(item)
if value < current_min:
current_min_index = idx
current_min = value
return current_min_index+1
def argmax(list, f = lambda x: x):
current_max_index = -1
current_max = f(list[0])
for idx, item in enumerate(list[1:]):
value = f(item)
if value > current_max:
current_max_index = idx
current_max = value
return current_max_index+1
def cartesian_product(list1, list2):
result = []
for i in list1:
for j in list2:
result.append((i,j))
def cartesian_product_sum(list1, list2):
"""This routine returns a list of sums of each element of
list1 with each element of list2. Also works with lists.
"""
result = []
for i in list1:
for j in list2:
result.append(i+j)
return result
def reverse_dictionary(the_dict):
result = {}
for key, value in the_dict.iteritems():
if value in result:
raise RuntimeError, "non-reversible mapping"
result[value] = key
return result
def generate_positive_integer_tuples_below(n, length, least = 0):
assert length >= 0
if length == 0:
yield []
else:
for i in range(least, n):
for base in generate_positive_integer_tuples_below(n, length-1, least):
yield [i] + base
def generate_all_positive_integer_tuples(length, least = 0):
assert length >= 0
current_max = least
while True:
for max_pos in range(length):
for prebase in generate_positive_integer_tuples_below(current_max, max_pos, least):
for postbase in generate_positive_integer_tuples_below(current_max+1, length-max_pos-1, least):
yield prebase + [current_max] + postbase
current_max += 1
def _pos_and_neg_adaptor(tuple_iter):
for tup in tuple_iter:
nonzero_indices = [i for i in range(len(tup)) if tup[i] != 0]
for do_neg_tup in generate_positive_integer_tuples_below(2, len(nonzero_indices)):
this_result = list(tup)
for index, do_neg in enumerate(do_neg_tup):
if do_neg:
this_result[nonzero_indices[index]] *= -1
yield tuple(this_result)
def generate_all_integer_tuples_below(n, length, least_abs = 0):
return _pos_and_neg_adaptor(generate_positive_integer_tuples_below(
n, length, least_abs))
def generate_all_integer_tuples(length, least_abs = 0):
return _pos_and_neg_adaptor(generate_all_positive_integer_tuples(
length, least_abs))
# Obscure stuff --------------------------------------------------------------
def write_matrix_as_csv(filename, matrix):
mat_file = file(filename, "w")
h,w = matrix.shape
for row in range(0, h):
for column in range(0, w):
mat_file.write("%f," % matrix[ row, column ])
mat_file.write("\n")
def enumerate_basic_directions(dimensions):
coordinate_list = [[0], [1], [-1]]
return reduce(cartesian_product_sum, [coordinate_list] * dimensions)[1:]