Newer
Older
Andreas Klöckner
committed
import math, sys, operator, types
Andreas Klöckner
committed
def delta(x,y):
if x == y:
return 1
else:
return 0
Andreas Klöckner
committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Data structures ------------------------------------------------------------
class Reference(object):
def __init__( self, value ):
self.V = value
def get( self ):
return self.V
def set( self, value ):
self.V = value
class FunctionValueCache(object):
def __init__(self, function):
self.Function = function
self.ResultMap = {}
def __call__(self, arg):
try:
return self.ResultMap[arg]
except KeyError:
result = self.Function(arg)
self.ResultMap[arg] = result
return result
class DictionaryWithDefault(object):
def __init__(self, default_value_generator, start = {}):
self._Dictionary = dict(start)
self._DefaultGenerator = default_value_generator
def __getitem__(self, index):
try:
return self._Dictionary[index]
except KeyError:
value = self._DefaultGenerator(index)
self._Dictionary[index] = value
return value
def __setitem__(self, index, value):
self._Dictionary[index] = value
def __contains__(self, item):
return True
def iterkeys(self):
return self._Dictionary.iterkeys()
def __iter__(self):
return self._Dictionary.__iter__()
def iteritems(self):
return self._Dictionary.iteritems()
class FakeList(object):
def __init__(self, f, length):
self._Length = length
self._Function = f
def __len__(self):
return self._Length
def __getitem__(self, index):
try:
return [self._Function(i)
for i in range(*index.indices(self._Length))]
except AttributeError:
return self._Function(index)
class DependentDictionary(object):
def __init__(self, f, start = {}):
self._Function = f
self._Dictionary = start.copy()
def copy(self):
return DependentDictionary(self._Function, self._Dictionary)
def __contains__(self, key):
try:
self[key]
return True
except KeyError:
return False
def __getitem__(self, key):
try:
return self._Dictionary[key]
except KeyError:
return self._Function(self._Dictionary, key)
def __setitem__(self, key, value):
self._Dictionary[key] = value
def genuineKeys(self):
return self._Dictionary.keys()
def iteritems(self):
return self._Dictionary.iteritems()
def iterkeys(self):
return self._Dictionary.iterkeys()
def itervalues(self):
return self._Dictionary.itervalues()
def add_tuples(t1, t2):
return tuple([t1v + t2v for t1v, t2v in zip(t1, t2)])
def negate_tuple(t1):
return tuple([-t1v for t1v in t1])
def write_1d_gnuplot_graph(f, a, b, steps=100, fname=",,f.data", progress = False):
h = float(b - a)/steps
gnuplot_file = file(fname, "w")
def do_plot(func):
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
gnuplot_file.write("%f\t%f\n" % (x, func(x)))
do_plot(f)
if progress:
sys.stdout.write("\n")
def write_1d_gnuplot_graphs(f, a, b, steps=100, fnames=None, progress=False):
h = float(b - a)/steps
if not fnames:
result_count = len(f(a))
fnames = [",,f%d.data" % i for i in range(result_count)]
gnuplot_files = [file(fname, "w") for fname in fnames]
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
for gpfile, y in zip(gnuplot_files, f(x)):
gpfile.write("%f\t%f\n" % (x, y))
if progress:
sys.stdout.write("\n")
Andreas Tester
committed
def write_2d_gnuplot_graph(f, (x0, y0), (x1, y1), (xsteps, ysteps)=(100, 100), fname=",,f.data"):
hx = float(x1 - x0)/xsteps
hy = float(y1 - y0)/ysteps
gnuplot_file = file(fname, "w")
for ny in range(ysteps):
for nx in range(xsteps):
x = x0 + hx * nx
y = y0 + hy * ny
gnuplot_file.write("%g\t%g\t%g\n" % (x, y, f(x, y)))
gnuplot_file.write("\n")
Andreas Klöckner
committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
def write_gnuplot_graph(f, a, b, steps = 100, fname = ",,f.data", progress = False):
h = float(b - a)/steps
gnuplot_file = file(fname, "w")
def do_plot(func):
for n in range(steps):
if progress:
sys.stdout.write(".")
sys.stdout.flush()
x = a + h * n
gnuplot_file.write("%f\t%f\n" % (x, func(x)))
if isinstance(f, types.ListType):
for f_index, real_f in enumerate(f):
if progress:
sys.stdout.write("function %d: " % f_index)
do_plot(real_f)
gnuplot_file.write("\n")
if progress:
sys.stdout.write("\n")
else:
do_plot(f)
if progress:
sys.stdout.write("\n")
class DictionaryOfArithmeticTypes(dict):
"""Allows arithmetic operations on dictionaries
which propagate to its elements.
"""
def _get_empty_self(self):
return DictionaryOfArithmeticTypes()
def assert_same_keys(self, other):
for key in self:
assert key in other
for key in other:
assert key in self
def unary_operator(self, operator):
result = self._get_empty_self()
for key in self:
result[key] = operator(self[key])
return result
def binary_operator(self, other, operator):
try:
self.assert_same_keys(other)
result = self._get_empty_self()
for key in self:
result[key] = operator(self[key], other[key])
return result
except TypeError:
result = self._get_empty_self()
for key in self:
result[key] = operator(self[key], other)
return result
def reverse_binary_operator(self, other, operator):
try:
self.assert_same_keys(other)
result = self._get_empty_self()
for key in self:
result[key] = operator(other[key], self[key])
return result
except TypeError:
result = self._get_empty_self()
for key in self:
result[key] = operator(other, self[key])
return result
def __neg__(self): return self.unary_operator(operator.neg)
def __pos__(self): return self.unary_operator(operator.pos)
def __abs__(self): return self.unary_operator(operator.abs)
def __invert__(self): return self.unary_operator(operator.invert)
def __add__(self, other): return self.binary_operator(other, operator.add)
def __sub__(self, other): return self.binary_operator(other, operator.sub)
def __mul__(self, other): return self.binary_operator(other, operator.mul)
def __div__(self, other): return self.binary_operator(other, operator.div)
def __mod__(self, other): return self.binary_operator(other, operator.mod)
def __pow__(self, other): return self.binary_operator(other, operator.pow)
def __lshift__(self, other): return self.binary_operator(other, operator.lshift)
def __rshift__(self, other): return self.binary_operator(other, operator.rshift)
def __and__(self, other): return self.binary_operator(other, operator.and_)
def __or__(self, other): return self.binary_operator(other, operator.or_)
def __xor__(self, other): return self.binary_operator(other, operator.xor)
def __radd__(self, other): return self.reverse_binary_operator(other, operator.add)
def __rsub__(self, other): return self.reverse_binary_operator(other, operator.sub)
def __rmul__(self, other): return self.reverse_binary_operator(other, operator.mul)
def __rdiv__(self, other): return self.reverse_binary_operator(other, operator.div)
def __rmod__(self, other): return self.reverse_binary_operator(other, operator.mod)
def __rpow__(self, other): return self.reverse_binary_operator(other, operator.pow)
def __rlshift__(self, other): return self.reverse_binary_operator(other, operator.lshift)
def __rrshift__(self, other): return self.reverse_binary_operator(other, operator.rshift)
def __rand__(self, other): return self.reverse_binary_operator(other, operator.and_)
def __ror__(self, other): return self.reverse_binary_operator(other, operator.or_)
def __rxor__(self, other): return self.reverse_binary_operator(other, operator.xor)
def __iadd__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] += other[key]
return self
def __isub__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] -= other[key]
return self
def __imul__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] *= other[key]
return self
def __idiv__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] /= other[key]
return self
def __imod__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] %= other[key]
return self
def __ipow__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] **= other[key]
return self
def __ilshift__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] <<= other[key]
return self
def __irshift__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] >>= other[key]
return self
def __iand__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] &= other[key]
return self
def __ior__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] |= other[key]
return self
def __ixor__(self, other):
self.assert_same_keys(other)
for key in self:
self[key] ^= other[key]
return self
# Generic utilities ----------------------------------------------------------
def flatten(list):
result = []
for i in list:
result += i
return result
def sum_over(function, arguments):
result = 0
for i in arguments:
result += function(i)
return result
def general_sum(sequence):
return reduce(operator.add, sequence)
def linear_combination(coefficients, vectors):
result = coefficients[0] * vectors[0]
for c,v in zip(coefficients, vectors)[1:]:
result += c*v
return result
def average(sequence):
return general_sum(sequence)/float(len(sequence))
def all_equal(sequence):
item = sequence[0]
for i in sequence[1:]:
if i != item:
return False
return True
def decorate(function, list):
return map(lambda x: (x, function(x)), list)
def partition(criterion, list):
part_true = []
part_false = []
for i in list:
if criterion(i):
part_true.append(i)
else:
part_false.append(i)
return part_true, part_false
def product(list):
return reduce(lambda x,y: x*y, list, 1)
def argmin(list, f = lambda x: x):
current_min_index = -1
current_min = f(list[0])
for idx, item in enumerate(list[1:]):
value = f(item)
if value < current_min:
current_min_index = idx
current_min = value
return current_min_index+1
def argmax(list, f = lambda x: x):
current_max_index = -1
current_max = f(list[0])
for idx, item in enumerate(list[1:]):
value = f(item)
if value > current_max:
current_max_index = idx
current_max = value
return current_max_index+1
def cartesian_product(list1, list2):
result = []
for i in list1:
for j in list2:
result.append((i,j))
def cartesian_product_sum(list1, list2):
"""This routine returns a list of sums of each element of
list1 with each element of list2. Also works with lists.
"""
result = []
for i in list1:
for j in list2:
result.append(i+j)
return result
def reverse_dictionary(the_dict):
result = {}
for key, value in the_dict.iteritems():
if value in result:
raise RuntimeError, "non-reversible mapping"
result[value] = key
return result
def generate_positive_integer_tuples_below(n, length, least = 0):
assert length >= 0
if length == 0:
yield []
else:
for i in range(least, n):
for base in generate_positive_integer_tuples_below(n, length-1, least):
yield [i] + base
def generate_all_positive_integer_tuples(length, least = 0):
assert length >= 0
current_max = least
while True:
for max_pos in range(length):
for prebase in generate_positive_integer_tuples_below(current_max, max_pos, least):
for postbase in generate_positive_integer_tuples_below(current_max+1, length-max_pos-1, least):
yield prebase + [current_max] + postbase
current_max += 1
def _pos_and_neg_adaptor(tuple_iter):
for tup in tuple_iter:
nonzero_indices = [i for i in range(len(tup)) if tup[i] != 0]
for do_neg_tup in generate_positive_integer_tuples_below(2, len(nonzero_indices)):
this_result = list(tup)
for index, do_neg in enumerate(do_neg_tup):
if do_neg:
this_result[nonzero_indices[index]] *= -1
yield tuple(this_result)
def generate_all_integer_tuples_below(n, length, least_abs = 0):
return _pos_and_neg_adaptor(generate_positive_integer_tuples_below(
n, length, least_abs))
def generate_all_integer_tuples(length, least_abs = 0):
return _pos_and_neg_adaptor(generate_all_positive_integer_tuples(
length, least_abs))
# Obscure stuff --------------------------------------------------------------
def enumerate_basic_directions(dimensions):
coordinate_list = [[0], [1], [-1]]
return reduce(cartesian_product_sum, [coordinate_list] * dimensions)[1:]