Newer
Older
// A C++ wrapper for CUDA
#ifndef _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#define _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#include <cuda.h>
#include <stdexcept>
#include <boost/shared_ptr.hpp>
#include <boost/foreach.hpp>
#include <utility>
#include <stack>
#include <iostream>
#include <vector>
#include <boost/python.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/tss.hpp>
#include <boost/version.hpp>
#if (BOOST_VERSION/100) < 1035
#warning *****************************************************************
#warning **** Your version of Boost C++ is likely too old for PyCUDA. ****
#warning *****************************************************************
// #define CUDAPP_TRACE_CUDA
#define CUDAPP_POST_30_BETA
#ifdef CUDAPP_TRACE_CUDA
#define CUDAPP_PRINT_CALL_TRACE(NAME) \
std::cerr << NAME << std::endl;
#define CUDAPP_PRINT_CALL_TRACE_INFO(NAME, EXTRA_INFO) \
std::cerr << NAME << " (" << EXTRA_INFO << ')' << std::endl;
#define CUDAPP_PRINT_ERROR_TRACE(NAME, CODE) \
if (CODE != CUDA_SUCCESS) \
std::cerr << NAME << " failed with code " << CODE << std::endl;
#else
#define CUDAPP_PRINT_CALL_TRACE(NAME) /*nothing*/
#define CUDAPP_PRINT_CALL_TRACE_INFO(NAME, EXTRA_INFO) /*nothing*/
#define CUDAPP_PRINT_ERROR_TRACE(NAME, CODE) /*nothing*/
#define CUDAPP_CALL_GUARDED_THREADED_WITH_TRACE_INFO(NAME, ARGLIST, TRACE_INFO) \
{ \
CUDAPP_PRINT_CALL_TRACE_INFO(#NAME, TRACE_INFO); \
CUresult cu_status_code; \
Py_BEGIN_ALLOW_THREADS \
cu_status_code = NAME ARGLIST; \
Py_END_ALLOW_THREADS \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(NAME, ARGLIST, TRACE_INFO) \
{ \
CUDAPP_PRINT_CALL_TRACE_INFO(#NAME, TRACE_INFO); \
CUresult cu_status_code; \
cu_status_code = NAME ARGLIST; \
CUDAPP_PRINT_ERROR_TRACE(#NAME, cu_status_code); \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED_THREADED(NAME, ARGLIST) \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
Py_BEGIN_ALLOW_THREADS \
cu_status_code = NAME ARGLIST; \
Py_END_ALLOW_THREADS \
CUDAPP_PRINT_ERROR_TRACE(#NAME, cu_status_code); \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED(NAME, ARGLIST) \
{ \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
cu_status_code = NAME ARGLIST; \
CUDAPP_PRINT_ERROR_TRACE(#NAME, cu_status_code); \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED_CLEANUP(NAME, ARGLIST) \
{ \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
cu_status_code = NAME ARGLIST; \
CUDAPP_PRINT_ERROR_TRACE(#NAME, cu_status_code); \
if (cu_status_code != CUDA_SUCCESS) \
std::cerr \
<< "PyCUDA WARNING: a clean-up operation failed (dead context maybe?)" \
<< std::endl \
<< cuda::error::make_message(#NAME, cu_status_code) \
<< std::endl; \
}
#define CUDAPP_CATCH_CLEANUP_ON_DEAD_CONTEXT(TYPE) \
catch (cuda::cannot_activate_out_of_thread_context) \
{ } \
catch (cuda::cannot_activate_dead_context) \
{ \
/* PyErr_Warn( \
PyExc_UserWarning, #TYPE " in dead context was implicitly cleaned up");*/ \
}
// In all likelihood, this TYPE's managing thread has exited, and
// therefore its context has already been deleted. No need to harp
// on the fact that we still thought there was cleanup to do.
namespace cuda
{
namespace py = boost::python;
class error : public std::runtime_error
{
private:
const char *m_routine;
CUresult m_code;
public:
static std::string make_message(const char *rout, CUresult c, const char *msg=0)
{
std::string result = rout;
result += " failed: ";
result += curesult_to_str(c);
if (msg)
{
result += " - ";
result += msg;
}
return result;
}
error(const char *rout, CUresult c, const char *msg=0)
: std::runtime_error(make_message(rout, c, msg)),
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
m_routine(rout), m_code(c)
{ }
const char *routine() const
{
return m_routine;
}
CUresult code() const
{
return m_code;
}
static const char *curesult_to_str(CUresult e)
{
switch (e)
{
case CUDA_SUCCESS: return "success";
case CUDA_ERROR_INVALID_VALUE: return "invalid value";
case CUDA_ERROR_OUT_OF_MEMORY: return "out of memory";
case CUDA_ERROR_NOT_INITIALIZED: return "not initialized";
#if CUDA_VERSION >= 2000
case CUDA_ERROR_DEINITIALIZED: return "deinitialized";
#endif
case CUDA_ERROR_NO_DEVICE: return "no device";
case CUDA_ERROR_INVALID_DEVICE: return "invalid device";
case CUDA_ERROR_INVALID_IMAGE: return "invalid image";
case CUDA_ERROR_INVALID_CONTEXT: return "invalid context";
case CUDA_ERROR_CONTEXT_ALREADY_CURRENT: return "context already current";
case CUDA_ERROR_MAP_FAILED: return "map failed";
case CUDA_ERROR_UNMAP_FAILED: return "unmap failed";
case CUDA_ERROR_ARRAY_IS_MAPPED: return "array is mapped";
case CUDA_ERROR_ALREADY_MAPPED: return "already mapped";
case CUDA_ERROR_NO_BINARY_FOR_GPU: return "no binary for gpu";
case CUDA_ERROR_ALREADY_ACQUIRED: return "already acquired";
case CUDA_ERROR_NOT_MAPPED: return "not mapped";
#if CUDA_VERSION >= 3000
case CUDA_ERROR_NOT_MAPPED_AS_ARRAY: return "not mapped as array";
case CUDA_ERROR_NOT_MAPPED_AS_POINTER: return "not mapped as pointer";
#ifdef CUDAPP_POST_30_BETA
case CUDA_ERROR_ECC_UNCORRECTABLE: return "ECC uncorrectable";
#endif
#endif
#if CUDA_VERSION >= 3010
case CUDA_ERROR_UNSUPPORTED_LIMIT: return "unsupported limit";
case CUDA_ERROR_INVALID_SOURCE: return "invalid source";
case CUDA_ERROR_FILE_NOT_FOUND: return "file not found";
case CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND:
return "shared object symbol not found";
case CUDA_ERROR_SHARED_OBJECT_INIT_FAILED:
return "shared object init failed";
#endif
case CUDA_ERROR_INVALID_HANDLE: return "invalid handle";
case CUDA_ERROR_NOT_FOUND: return "not found";
case CUDA_ERROR_NOT_READY: return "not ready";
case CUDA_ERROR_LAUNCH_FAILED: return "launch failed";
case CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES: return "launch out of resources";
case CUDA_ERROR_LAUNCH_TIMEOUT: return "launch timeout";
case CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING: return "launch incompatible texturing";
return "attempted to retrieve 64-bit pointer via 32-bit api function";
return "attempted to retrieve 64-bit size via 32-bit api function";
case CUDA_ERROR_UNKNOWN: return "unknown";
default: return "invalid error code";
}
}
};
struct cannot_activate_out_of_thread_context : public std::logic_error
cannot_activate_out_of_thread_context(std::string const &w)
: std::logic_error(w)
{ }
};
struct cannot_activate_dead_context : public std::logic_error
cannot_activate_dead_context(std::string const &w)
: std::logic_error(w)
{ }
};
// {{{ version query ------------------------------------------------------------
#if CUDA_VERSION >= 2020
inline int get_driver_version()
{
int result;
CUDAPP_CALL_GUARDED(cuDriverGetVersion, (&result));
return result;
}
#endif
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
class context;
class device
{
private:
CUdevice m_device;
public:
device(CUdevice dev)
: m_device(dev)
{ }
static int count()
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetCount, (&result));
return result;
}
std::string name()
{
char buffer[1024];
CUDAPP_CALL_GUARDED(cuDeviceGetName, (buffer, sizeof(buffer), m_device));
return buffer;
}
py::tuple compute_capability()
{
int major, minor;
CUDAPP_CALL_GUARDED(cuDeviceComputeCapability, (&major, &minor, m_device));
return py::make_tuple(major, minor);
}
unsigned int total_memory()
{
unsigned int bytes;
CUDAPP_CALL_GUARDED(cuDeviceTotalMem, (&bytes, m_device));
return bytes;
}
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetAttribute, (&result, attr, m_device));
return result;
}
bool operator==(const device &other) const
{
return m_device == other.m_device;
}
bool operator!=(const device &other) const
{
return m_device != other.m_device;
}
long hash() const
{
return m_device;
}
boost::shared_ptr<context> make_context(unsigned int flags);
CUdevice handle() const
{ return m_device; }
void init(unsigned int flags)
{
CUDAPP_CALL_GUARDED(cuInit, (flags));
device *make_device(int ordinal)
CUdevice result;
CUDAPP_CALL_GUARDED(cuDeviceGet, (&result, ordinal));
return new device(result);
}
/* A word on context management: We don't let CUDA's context stack get more
* than one deep. CUDA only supports pushing floating contexts. We may wish
* to push contexts that are already active at a deeper stack level, so we
* maintain all contexts floating other than the top one.
*/
namespace gl {
boost::shared_ptr<context>
make_gl_context(device const &dev, unsigned int flags);
}
Andreas Klöckner
committed
class context_stack;
extern boost::thread_specific_ptr<context_stack> context_stack_ptr;
Andreas Klöckner
committed
class context_stack
{
Andreas Klöckner
committed
/* This wrapper is necessary because we need to pop the contents
* off the stack before we destroy each of the contexts. This, in turn,
* is because the contexts need to be able to access the stack in order
* to be destroyed.
*/
private:
typedef std::stack<boost::shared_ptr<context> > stack_t;
typedef stack_t::value_type value_type;;
stack_t m_stack;
Andreas Klöckner
committed
public:
~context_stack();
bool empty() const
{ return m_stack.empty(); }
value_type &top()
{ return m_stack.top(); }
void pop()
{ m_stack.pop(); }
void push(value_type v)
{ m_stack.push(v); }
static context_stack &get()
{
if (context_stack_ptr.get() == 0)
context_stack_ptr.reset(new context_stack);
return *context_stack_ptr;
}
};
class context : boost::noncopyable
{
private:
CUcontext m_context;
bool m_valid;
unsigned m_use_count;
boost::thread::id m_thread;
context(CUcontext ctx)
: m_context(ctx), m_valid(true), m_use_count(1),
m_thread(boost::this_thread::get_id())
{ }
~context()
Andreas Klöckner
committed
/* It's possible that we get here with a non-zero m_use_count. Since the context
* stack holds shared_ptrs, this must mean that the context stack itself is getting
* destroyed, which means it's ok for this context to sign off, too.
*/
CUcontext handle() const
{ return m_context; }
bool operator==(const context &other) const
{
return m_context == other.m_context;
}
bool operator!=(const context &other) const
{
return m_context != other.m_context;
}
long hash() const
{
return long(m_context) ^ long(this);
boost::thread::id thread_id() const
{ return m_thread; }
bool is_valid() const
{
return m_valid;
}
void detach()
{
if (m_valid)
{
bool active_before_destruction = current_context().get() == this;
if (active_before_destruction)
CUDAPP_CALL_GUARDED_CLEANUP(cuCtxDetach, (m_context));
{
if (m_thread == boost::this_thread::get_id())
{
Andreas Klöckner
committed
CUDAPP_CALL_GUARDED_CLEANUP(cuCtxPushCurrent, (m_context));
CUDAPP_CALL_GUARDED_CLEANUP(cuCtxDetach, (m_context));
Andreas Klöckner
committed
/* pop is implicit in detach */
}
else
{
// In all likelihood, this context's managing thread has exited, and
// therefore this context has already been deleted. No need to harp
// on the fact that we still thought there was cleanup to do.
// std::cerr << "PyCUDA WARNING: leaked out-of-thread context " << std::endl;
}
}
m_valid = false;
if (active_before_destruction)
{
boost::shared_ptr<context> new_active = current_context(this);
if (new_active.get())
{
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (new_active->m_context));
}
else
throw error("context::detach", CUDA_ERROR_INVALID_CONTEXT,
"cannot detach from invalid context");
}
static device get_device()
CUDAPP_CALL_GUARDED(cuCtxGetDevice, (&dev));
return device(dev);
}
#if CUDA_VERSION >= 2000
static void prepare_context_switch()
{
Andreas Klöckner
committed
if (!context_stack::get().empty())
{
CUcontext popped;
CUDAPP_CALL_GUARDED(cuCtxPopCurrent, (&popped));
prepare_context_switch();
Andreas Klöckner
committed
context_stack &ctx_stack = context_stack::get();
Andreas Klöckner
committed
if (ctx_stack.empty())
{
throw error("context::pop", CUDA_ERROR_INVALID_CONTEXT,
"cannot pop non-current context");
}
boost::shared_ptr<context> current = current_context();
if (current)
--current->m_use_count;
current = current_context();
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (current_context()->m_context));
}
#else
static void prepare_context_switch() { }
#endif
static void synchronize()
{ CUDAPP_CALL_GUARDED_THREADED(cuCtxSynchronize, ()); }
static boost::shared_ptr<context> current_context(context *except=0)
while (true)
{
Andreas Klöckner
committed
if (context_stack::get().empty())
return boost::shared_ptr<context>();
Andreas Klöckner
committed
boost::shared_ptr<context> result(context_stack::get().top());
&& result->is_valid())
// good, weak pointer didn't expire
return result;
// context invalid, pop it and try again.
Andreas Klöckner
committed
context_stack::get().pop();
#if CUDA_VERSION >= 3010
static void set_limit(CUlimit limit, size_t value)
{
CUDAPP_CALL_GUARDED(cuCtxSetLimit, (limit, value));
}
static size_t get_limit(CUlimit limit)
{
size_t value;
CUDAPP_CALL_GUARDED(cuCtxGetLimit, (&value, limit));
return value;
}
#endif
friend class device;
friend void context_push(boost::shared_ptr<context> ctx);
gl::make_gl_context(device const &dev, unsigned int flags);
};
boost::shared_ptr<context> device::make_context(unsigned int flags)
{
context::prepare_context_switch();
CUcontext ctx;
CUDAPP_CALL_GUARDED(cuCtxCreate, (&ctx, flags, m_device));
boost::shared_ptr<context> result(new context(ctx));
Andreas Klöckner
committed
context_stack::get().push(result);
return result;
}
#if CUDA_VERSION >= 2000
void context_push(boost::shared_ptr<context> ctx)
context::prepare_context_switch();
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (ctx->m_context));
Andreas Klöckner
committed
context_stack::get().push(ctx);
++ctx->m_use_count;
}
#endif
Andreas Klöckner
committed
inline context_stack::~context_stack()
{
if (!m_stack.empty())
{
Andreas Klöckner
committed
<< "-------------------------------------------------------------------" << std::endl
<< "PyCUDA ERROR: The context stack was not empty upon module cleanup." << std::endl
<< "-------------------------------------------------------------------" << std::endl
<< "A context was still active when the context stack was being" << std::endl
<< "cleaned up. At this point in our execution, CUDA may already" << std::endl
<< "have been deinitialized, so there is no way we can finish" << std::endl
<< "cleanly. The program will be aborted now." << std::endl
<< "Use Context.pop() to avoid this problem." << std::endl
<< "-------------------------------------------------------------------" << std::endl;
abort();
}
}
class explicit_context_dependent
{
private:
boost::shared_ptr<context> m_ward_context;
public:
void acquire_context()
{
m_ward_context = context::current_context();
if (m_ward_context.get() == 0)
throw error("explicit_context_dependent",
CUDA_ERROR_INVALID_CONTEXT,
"no currently active context?");
}
void release_context()
{
m_ward_context.reset();
}
boost::shared_ptr<context> get_context()
{
return m_ward_context;
}
class context_dependent : public explicit_context_dependent
{
private:
boost::shared_ptr<context> m_ward_context;
public:
context_dependent()
{ acquire_context(); }
};
class scoped_context_activation
{
private:
boost::shared_ptr<context> m_context;
bool m_did_switch;
public:
scoped_context_activation(boost::shared_ptr<context> ctx)
: m_context(ctx)
if (!m_context->is_valid())
throw cuda::cannot_activate_dead_context(
"cannot activate dead context");
m_did_switch = context::current_context() != m_context;
if (m_did_switch)
{
if (boost::this_thread::get_id() != m_context->thread_id())
throw cuda::cannot_activate_out_of_thread_context(
"cannot activate out-of-thread context");
#if CUDA_VERSION >= 2000
context_push(m_context);
#else
throw cuda::error("scoped_context_activation", CUDA_ERROR_INVALID_CONTEXT,
"not available in CUDA < 2.0");
#endif
}
~scoped_context_activation()
#if CUDA_VERSION >= 2000
if (m_did_switch)
m_context->pop();
#endif
class stream : public boost::noncopyable, public context_dependent
{
private:
CUstream m_stream;
public:
stream(unsigned int flags=0)
{ CUDAPP_CALL_GUARDED(cuStreamCreate, (&m_stream, flags)); }
~stream()
try
{
CUDAPP_CALL_GUARDED_CLEANUP(cuStreamDestroy, (m_stream));
}
CUDAPP_CATCH_CLEANUP_ON_DEAD_CONTEXT(stream);
void synchronize()
{ CUDAPP_CALL_GUARDED_THREADED(cuStreamSynchronize, (m_stream)); }
CUstream handle() const
{ return m_stream; }
bool is_done() const
CUDAPP_PRINT_CALL_TRACE("cuStreamQuery");
CUresult result = cuStreamQuery(m_stream);
switch (result)
{
return false;
default:
CUDAPP_PRINT_ERROR_TRACE("cuStreamQuery", result);
throw error("cuStreamQuery", result);
}
}
};
class array : public boost::noncopyable, public context_dependent
{
private:
CUarray m_array;
bool m_managed;
public:
array(const CUDA_ARRAY_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArrayCreate, (&m_array, &descr)); }
#if CUDA_VERSION >= 2000
array(const CUDA_ARRAY3D_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArray3DCreate, (&m_array, &descr)); }
#endif
array(CUarray ary, bool managed)
{ }
~array()
{ free(); }
void free()
{
if (m_managed)
{
try
{
scoped_context_activation ca(get_context());
CUDAPP_CALL_GUARDED_CLEANUP(cuArrayDestroy, (m_array));
CUDAPP_CATCH_CLEANUP_ON_DEAD_CONTEXT(array);
m_managed = false;
release_context();
}
}
CUDA_ARRAY_DESCRIPTOR get_descriptor()
{
CUDA_ARRAY_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArrayGetDescriptor, (&result, m_array));
return result;
}
#if CUDA_VERSION >= 2000
CUDA_ARRAY3D_DESCRIPTOR get_descriptor_3d()
{
CUDA_ARRAY3D_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArray3DGetDescriptor, (&result, m_array));
return result;
}
#endif
CUarray handle() const
{ return m_array; }
};
class module;
class texture_reference : public boost::noncopyable
{
private:
CUtexref m_texref;
bool m_managed;
// life support for array and module
boost::shared_ptr<array> m_array;
boost::shared_ptr<module> m_module;
public:
texture_reference()
: m_managed(true)
{ CUDAPP_CALL_GUARDED(cuTexRefCreate, (&m_texref)); }
texture_reference(CUtexref tr, bool managed)
: m_texref(tr), m_managed(managed)
{ }
~texture_reference()
if (m_managed)
{
CUDAPP_CALL_GUARDED_CLEANUP(cuTexRefDestroy, (m_texref));
}
}
void set_module(boost::shared_ptr<module> mod)
{ m_module = mod; }
CUtexref handle() const
{ return m_texref; }
void set_array(boost::shared_ptr<array> ary)
{
CUDAPP_CALL_GUARDED(cuTexRefSetArray, (m_texref,
ary->handle(), CU_TRSA_OVERRIDE_FORMAT));
m_array = ary;
}
unsigned int set_address(CUdeviceptr dptr, unsigned int bytes, bool allow_offset=false)
unsigned int byte_offset;
CUDAPP_CALL_GUARDED(cuTexRefSetAddress, (&byte_offset,
if (!allow_offset && byte_offset != 0)
throw cuda::error("texture_reference::set_address", CUDA_ERROR_INVALID_VALUE,
"texture binding resulted in offset, but allow_offset was false");
m_array.reset();
return byte_offset;
}
const CUDA_ARRAY_DESCRIPTOR &descr, unsigned int pitch)
{
CUDAPP_CALL_GUARDED(cuTexRefSetAddress2D, (m_texref, &descr, dptr, pitch));
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
void set_format(CUarray_format fmt, int num_packed_components)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFormat, (m_texref, fmt, num_packed_components)); }
void set_address_mode(int dim, CUaddress_mode am)
{ CUDAPP_CALL_GUARDED(cuTexRefSetAddressMode, (m_texref, dim, am)); }
void set_filter_mode(CUfilter_mode fm)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFilterMode, (m_texref, fm)); }
void set_flags(unsigned int flags)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFlags, (m_texref, flags)); }
CUdeviceptr get_address()
{
CUdeviceptr result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddress, (&result, m_texref));
return result;
}
array *get_array()
{
CUarray result;
CUDAPP_CALL_GUARDED(cuTexRefGetArray, (&result, m_texref));
return new array(result, false);
}
CUaddress_mode get_address_mode(int dim)
{
CUaddress_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddressMode, (&result, m_texref, dim));
return result;
}
CUfilter_mode get_filter_mode()
{
CUfilter_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetFilterMode, (&result, m_texref));
return result;
}
#if CUDA_VERSION >= 2000
py::tuple get_format()
{
CUarray_format fmt;
int num_channels;
CUDAPP_CALL_GUARDED(cuTexRefGetFormat, (&fmt, &num_channels, m_texref));
return py::make_tuple(fmt, num_channels);
}
#endif
unsigned int get_flags()
{
unsigned int result;
CUDAPP_CALL_GUARDED(cuTexRefGetFlags, (&result, m_texref));
return result;
}
};
#if CUDA_VERSION >= 3010
class module;
class surface_reference : public boost::noncopyable
{
private:
CUsurfref m_surfref;
// life support for array and module
boost::shared_ptr<array> m_array;
boost::shared_ptr<module> m_module;
public:
surface_reference(CUsurfref sr)
: m_surfref(sr)
{ }
void set_module(boost::shared_ptr<module> mod)
{ m_module = mod; }
CUsurfref handle() const
{ return m_surfref; }
void set_array(boost::shared_ptr<array> ary, unsigned int flags)
{
CUDAPP_CALL_GUARDED(cuSurfRefSetArray, (m_surfref, ary->handle(), flags));
m_array = ary;
}
array *get_array()
{
CUarray result;
CUDAPP_CALL_GUARDED(cuSurfRefGetArray, (&result, m_surfref));
return new array(result, false);
}
};
#endif
class function;
class module : public boost::noncopyable, public context_dependent
{
private:
CUmodule m_module;
public:
module(CUmodule mod)