Newer
Older
// A C++ wrapper for CUDA
#ifndef _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#define _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#include <cuda.h>
#include <stdexcept>
#include <boost/shared_ptr.hpp>
#include <boost/foreach.hpp>
#include <boost/weak_ptr.hpp>
#include <utility>
#include <stack>
#include <iostream>
#include <vector>
#include <boost/python.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/tss.hpp>
#include <boost/version.hpp>
#if (BOOST_VERSION/100) < 1035
#warning *****************************************************************
#warning **** Your version of Boost C++ is likely too old for PyCUDA. ****
#warning *****************************************************************
// #define CUDAPP_TRACE_CUDA
#ifdef CUDAPP_TRACE_CUDA
#define CUDAPP_PRINT_CALL_TRACE(NAME) \
std::cerr << NAME << std::endl;
#define CUDAPP_PRINT_CALL_TRACE_INFO(NAME, EXTRA_INFO) \
std::cerr << NAME << " (" << EXTRA_INFO << ')' << std::endl;
#else
#define CUDAPP_PRINT_CALL_TRACE(NAME) /*nothing*/
#define CUDAPP_PRINT_CALL_TRACE_INFO(NAME, EXTRA_INFO) /*nothing*/
#define CUDAPP_CALL_GUARDED_THREADED_WITH_TRACE_INFO(NAME, ARGLIST, TRACE_INFO) \
{ \
CUDAPP_PRINT_CALL_TRACE_INFO(#NAME, TRACE_INFO); \
CUresult cu_status_code; \
Py_BEGIN_ALLOW_THREADS \
cu_status_code = NAME ARGLIST; \
Py_END_ALLOW_THREADS \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(NAME, ARGLIST, TRACE_INFO) \
{ \
CUDAPP_PRINT_CALL_TRACE_INFO(#NAME, TRACE_INFO); \
CUresult cu_status_code; \
cu_status_code = NAME ARGLIST; \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED_THREADED(NAME, ARGLIST) \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
Py_BEGIN_ALLOW_THREADS \
cu_status_code = NAME ARGLIST; \
Py_END_ALLOW_THREADS \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED(NAME, ARGLIST) \
{ \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
cu_status_code = NAME ARGLIST; \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED_CLEANUP(NAME, ARGLIST) \
{ \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
cu_status_code = NAME ARGLIST; \
if (cu_status_code != CUDA_SUCCESS) \
std::cerr \
<< "PyCUDA WARNING: a clean-up operation failed (dead context maybe?)" \
<< std::endl \
<< cuda::error::make_message(#NAME, cu_status_code) \
<< std::endl; \
}
catch (cuda::cannot_activate_out_of_thread_context) \
{ }
// In all likelihood, this TYPE's managing thread has exited, and
// therefore its context has already been deleted. No need to harp
// on the fact that we still thought there was cleanup to do.
// std::cerr << "PyCUDA WARNING: leaked out-of-thread " #TYPE " instance" << std::endl; */
namespace cuda
{
namespace py = boost::python;
class error : public std::runtime_error
{
private:
const char *m_routine;
CUresult m_code;
public:
static std::string make_message(const char *rout, CUresult c, const char *msg=0)
{
std::string result = rout;
result += " failed: ";
result += curesult_to_str(c);
if (msg)
{
result += " - ";
result += msg;
}
return result;
}
error(const char *rout, CUresult c, const char *msg=0)
: std::runtime_error(make_message(rout, c, msg)),
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
m_routine(rout), m_code(c)
{ }
const char *routine() const
{
return m_routine;
}
CUresult code() const
{
return m_code;
}
static const char *curesult_to_str(CUresult e)
{
switch (e)
{
case CUDA_SUCCESS: return "success";
case CUDA_ERROR_INVALID_VALUE: return "invalid value";
case CUDA_ERROR_OUT_OF_MEMORY: return "out of memory";
case CUDA_ERROR_NOT_INITIALIZED: return "not initialized";
#if CUDA_VERSION >= 2000
case CUDA_ERROR_DEINITIALIZED: return "deinitialized";
#endif
case CUDA_ERROR_NO_DEVICE: return "no device";
case CUDA_ERROR_INVALID_DEVICE: return "invalid device";
case CUDA_ERROR_INVALID_IMAGE: return "invalid image";
case CUDA_ERROR_INVALID_CONTEXT: return "invalid context";
case CUDA_ERROR_CONTEXT_ALREADY_CURRENT: return "context already current";
case CUDA_ERROR_MAP_FAILED: return "map failed";
case CUDA_ERROR_UNMAP_FAILED: return "unmap failed";
case CUDA_ERROR_ARRAY_IS_MAPPED: return "array is mapped";
case CUDA_ERROR_ALREADY_MAPPED: return "already mapped";
case CUDA_ERROR_NO_BINARY_FOR_GPU: return "no binary for gpu";
case CUDA_ERROR_ALREADY_ACQUIRED: return "already acquired";
case CUDA_ERROR_NOT_MAPPED: return "not mapped";
#if CUDA_VERSION >= 3000
case CUDA_ERROR_NOT_MAPPED_AS_ARRAY: return "not mapped as array";
case CUDA_ERROR_NOT_MAPPED_AS_POINTER: return "not mapped as pointer";
#endif
case CUDA_ERROR_INVALID_SOURCE: return "invalid source";
case CUDA_ERROR_FILE_NOT_FOUND: return "file not found";
case CUDA_ERROR_INVALID_HANDLE: return "invalid handle";
case CUDA_ERROR_NOT_FOUND: return "not found";
case CUDA_ERROR_NOT_READY: return "not ready";
case CUDA_ERROR_LAUNCH_FAILED: return "launch failed";
case CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES: return "launch out of resources";
case CUDA_ERROR_LAUNCH_TIMEOUT: return "launch timeout";
case CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING: return "launch incompatible texturing";
#if CUDA_VERSION >= 3000
case CUDA_ERROR_POINTER_IS_64BIT: return "pointer is 64-bit";
case CUDA_ERROR_SIZE_IS_64BIT: return "size is 64-bit";
#endif
case CUDA_ERROR_UNKNOWN: return "unknown";
default: return "invalid error code";
}
}
};
struct cannot_activate_out_of_thread_context : public std::logic_error
{
cannot_activate_out_of_thread_context(std::string const &w)
: std::logic_error(w)
{ }
};
// version query ------------------------------------------------------------
#if CUDA_VERSION >= 2020
inline int get_driver_version()
{
int result;
CUDAPP_CALL_GUARDED(cuDriverGetVersion, (&result));
return result;
}
#endif
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// device -------------------------------------------------------------------
class context;
class device
{
private:
CUdevice m_device;
public:
device(CUdevice dev)
: m_device(dev)
{ }
static int count()
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetCount, (&result));
return result;
}
std::string name()
{
char buffer[1024];
CUDAPP_CALL_GUARDED(cuDeviceGetName, (buffer, sizeof(buffer), m_device));
return buffer;
}
py::tuple compute_capability()
{
int major, minor;
CUDAPP_CALL_GUARDED(cuDeviceComputeCapability, (&major, &minor, m_device));
return py::make_tuple(major, minor);
}
unsigned int total_memory()
{
unsigned int bytes;
CUDAPP_CALL_GUARDED(cuDeviceTotalMem, (&bytes, m_device));
return bytes;
}
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetAttribute, (&result, attr, m_device));
return result;
}
bool operator==(const device &other) const
{
return m_device == other.m_device;
}
bool operator!=(const device &other) const
{
return m_device != other.m_device;
}
long hash() const
{
return m_device;
}
boost::shared_ptr<context> make_context(unsigned int flags);
CUdevice handle() const
{ return m_device; }
inline
void init(unsigned int flags)
{
CUDAPP_CALL_GUARDED(cuInit, (flags));
}
device *make_device(int ordinal)
{
CUdevice result;
CUDAPP_CALL_GUARDED(cuDeviceGet, (&result, ordinal));
return new device(result);
}
// context ------------------------------------------------------------------
/* A word on context management: We don't let CUDA's context stack get more
* than one deep. CUDA only supports pushing floating contexts. We may wish
* to push contexts that are already active at a deeper stack level, so we
* maintain all contexts floating other than the top one.
*/
// for friend decl
namespace gl {
boost::shared_ptr<context>
make_gl_context(device const &dev, unsigned int flags);
}
typedef std::stack<boost::weak_ptr<context>,
std::vector<boost::weak_ptr<context> > > context_stack_t;
extern boost::thread_specific_ptr<context_stack_t> context_stack_ptr;
inline context_stack_t &get_context_stack()
{
if (context_stack_ptr.get() == 0)
context_stack_ptr.reset(new context_stack_t);
return *context_stack_ptr;
}
class context : boost::noncopyable
{
private:
CUcontext m_context;
bool m_valid;
unsigned m_use_count;
boost::thread::id m_thread;
context(CUcontext ctx)
: m_context(ctx), m_valid(true), m_use_count(1),
m_thread(boost::this_thread::get_id())
{ }
~context()
if (m_use_count)
std::cerr
<< "-----------------------------------------------------------" << std::endl
<< "PyCUDA WARNING: I'm being asked to destroy a " << std::endl
<< "context that's part of the current context stack." << std::endl
<< "-----------------------------------------------------------" << std::endl
<< "I will pick the next lower active context from the" << std::endl
<< "context stack. Since this choice is happening" << std::endl
<< "at an unspecified point in time, your code" << std::endl
<< "may be making false assumptions about which" << std::endl
<< "context is active at what point." << std::endl
<< "Call Context.pop() to avoid this warning." << std::endl
<< "-----------------------------------------------------------" << std::endl
<< "If Python is terminating abnormally (eg. exiting upon an" << std::endl
<< "unhandled exception), you may ignore this." << std::endl
<< "-----------------------------------------------------------" << std::endl;
CUcontext handle() const
{ return m_context; }
bool operator==(const context &other) const
{
return m_context == other.m_context;
}
bool operator!=(const context &other) const
{
return m_context != other.m_context;
}
long hash() const
{
return long(m_context);
}
boost::thread::id thread_id() const
{ return m_thread; }
void detach()
{
if (m_valid)
{
if (current_context().get() == this)
{
CUDAPP_CALL_GUARDED_CLEANUP(cuCtxDetach, (m_context));
{
if (m_thread == boost::this_thread::get_id())
{
CUDAPP_CALL_GUARDED_CLEANUP(cuCtxDestroy, (m_context));
}
else
{
// In all likelihood, this context's managing thread has exited, and
// therefore this context has already been deleted. No need to harp
// on the fact that we still thought there was cleanup to do.
// std::cerr << "PyCUDA WARNING: leaked out-of-thread context " << std::endl;
}
}
m_valid = false;
boost::shared_ptr<context> new_active = current_context(this);
if (new_active.get())
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (new_active->m_context));
}
else
throw error("context::detach", CUDA_ERROR_INVALID_CONTEXT,
"cannot detach from invalid context");
}
static device get_device()
{
CUdevice dev;
CUDAPP_CALL_GUARDED(cuCtxGetDevice, (&dev));
return device(dev);
}
#if CUDA_VERSION >= 2000
static void prepare_context_switch()
{
if (get_context_stack().size())
{
CUcontext popped;
CUDAPP_CALL_GUARDED(cuCtxPopCurrent, (&popped));
}
}
void pop()
{
prepare_context_switch();
get_context_stack().pop();
--m_use_count;
boost::shared_ptr<context> current = current_context();
if (current)
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (current_context()->m_context));
}
#else
static void prepare_context_switch() { }
#endif
static void synchronize()
{ CUDAPP_CALL_GUARDED_THREADED(cuCtxSynchronize, ()); }
static boost::shared_ptr<context> current_context(context *except=0)
while (true)
{
if (get_context_stack().size() == 0)
return boost::shared_ptr<context>();
boost::weak_ptr<context> result(get_context_stack().top());
if (!result.expired() && result.lock().get() != except)
// good, weak pointer didn't expire
// (treating except as expired weak pointer)
return result.lock();
}
else
{
// weak pointer invalidated, pop it and try again.
get_context_stack().pop();
}
friend class device;
friend void context_push(boost::shared_ptr<context> ctx);
friend boost::shared_ptr<context>
gl::make_gl_context(device const &dev, unsigned int flags);
};
boost::shared_ptr<context> device::make_context(unsigned int flags)
{
context::prepare_context_switch();
CUcontext ctx;
CUDAPP_CALL_GUARDED(cuCtxCreate, (&ctx, flags, m_device));
boost::shared_ptr<context> result(new context(ctx));
get_context_stack().push(result);
return result;
}
#if CUDA_VERSION >= 2000
void context_push(boost::shared_ptr<context> ctx)
{
context::prepare_context_switch();
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (ctx->m_context));
get_context_stack().push(ctx);
++ctx->m_use_count;
}
#endif
class explicit_context_dependent
{
private:
boost::shared_ptr<context> m_ward_context;
public:
void acquire_context()
{
m_ward_context = context::current_context();
if (m_ward_context.get() == 0)
throw error("explicit_context_dependent",
CUDA_ERROR_INVALID_CONTEXT,
"no currently active context?");
}
void release_context()
{
m_ward_context.reset();
}
boost::shared_ptr<context> get_context()
{
return m_ward_context;
}
class context_dependent : public explicit_context_dependent
{
private:
boost::shared_ptr<context> m_ward_context;
public:
context_dependent()
{ acquire_context(); }
};
class scoped_context_activation
{
private:
boost::shared_ptr<context> m_context;
bool m_did_switch;
public:
scoped_context_activation(boost::shared_ptr<context> ctx)
: m_context(ctx)
{
m_did_switch = context::current_context() != m_context;
if (m_did_switch)
{
if (boost::this_thread::get_id() != m_context->thread_id())
throw cuda::cannot_activate_out_of_thread_context(
"cannot activate out-of-thread context");
#if CUDA_VERSION >= 2000
context_push(m_context);
#else
throw cuda::error("scoped_context_activation", CUDA_ERROR_INVALID_CONTEXT,
"not available in CUDA < 2.0");
#endif
}
~scoped_context_activation()
#if CUDA_VERSION >= 2000
if (m_did_switch)
m_context->pop();
#endif
// streams ------------------------------------------------------------------
class stream : public boost::noncopyable, public context_dependent
{
private:
CUstream m_stream;
public:
stream(unsigned int flags=0)
{ CUDAPP_CALL_GUARDED(cuStreamCreate, (&m_stream, flags)); }
~stream()
try
{
scoped_context_activation ca(get_context());
CUDAPP_CALL_GUARDED_CLEANUP(cuStreamDestroy, (m_stream));
}
void synchronize()
{ CUDAPP_CALL_GUARDED_THREADED(cuStreamSynchronize, (m_stream)); }
CUstream handle() const
{ return m_stream; }
bool is_done() const
{
#ifdef TRACE_CUDA
std::cerr << "cuStreamQuery" << std::endl;
#endif
CUresult result = cuStreamQuery(m_stream);
switch (result)
{
case CUDA_SUCCESS:
return true;
case CUDA_ERROR_NOT_READY:
return false;
default:
throw error("cuStreamQuery", result);
}
}
};
// arrays -------------------------------------------------------------------
class array : public boost::noncopyable, public context_dependent
{
private:
CUarray m_array;
bool m_managed;
public:
array(const CUDA_ARRAY_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArrayCreate, (&m_array, &descr)); }
#if CUDA_VERSION >= 2000
array(const CUDA_ARRAY3D_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArray3DCreate, (&m_array, &descr)); }
#endif
array(CUarray ary, bool managed)
{ }
~array()
{ free(); }
void free()
{
if (m_managed)
{
try
{
scoped_context_activation ca(get_context());
CUDAPP_CALL_GUARDED_CLEANUP(cuArrayDestroy, (m_array));
m_managed = false;
release_context();
}
}
CUDA_ARRAY_DESCRIPTOR get_descriptor()
{
CUDA_ARRAY_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArrayGetDescriptor, (&result, m_array));
return result;
}
#if CUDA_VERSION >= 2000
CUDA_ARRAY3D_DESCRIPTOR get_descriptor_3d()
{
CUDA_ARRAY3D_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArray3DGetDescriptor, (&result, m_array));
return result;
}
#endif
CUarray handle() const
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
{ return m_array; }
};
// texture reference --------------------------------------------------------
class module;
class texture_reference : public boost::noncopyable
{
private:
CUtexref m_texref;
bool m_managed;
// life support for array and module
boost::shared_ptr<array> m_array;
boost::shared_ptr<module> m_module;
public:
texture_reference()
: m_managed(true)
{ CUDAPP_CALL_GUARDED(cuTexRefCreate, (&m_texref)); }
texture_reference(CUtexref tr, bool managed)
: m_texref(tr), m_managed(managed)
{ }
~texture_reference()
{
if (m_managed)
{
CUDAPP_CALL_GUARDED_CLEANUP(cuTexRefDestroy, (m_texref));
}
}
void set_module(boost::shared_ptr<module> mod)
{ m_module = mod; }
CUtexref handle() const
{ return m_texref; }
void set_array(boost::shared_ptr<array> ary)
{
CUDAPP_CALL_GUARDED(cuTexRefSetArray, (m_texref,
ary->handle(), CU_TRSA_OVERRIDE_FORMAT));
m_array = ary;
}
unsigned int set_address(CUdeviceptr dptr, unsigned int bytes, bool allow_offset=false)
{
unsigned int byte_offset;
CUDAPP_CALL_GUARDED(cuTexRefSetAddress, (&byte_offset,
m_texref, dptr, bytes));
if (!allow_offset && byte_offset != 0)
throw cuda::error("texture_reference::set_address", CUDA_ERROR_INVALID_VALUE,
"texture binding resulted in offset, but allow_offset was false");
m_array.reset();
return byte_offset;
}
void set_address_2d(CUdeviceptr dptr,
const CUDA_ARRAY_DESCRIPTOR &descr, unsigned int pitch)
{
CUDAPP_CALL_GUARDED(cuTexRefSetAddress2D, (m_texref, &descr, dptr, pitch));
}
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
void set_format(CUarray_format fmt, int num_packed_components)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFormat, (m_texref, fmt, num_packed_components)); }
void set_address_mode(int dim, CUaddress_mode am)
{ CUDAPP_CALL_GUARDED(cuTexRefSetAddressMode, (m_texref, dim, am)); }
void set_filter_mode(CUfilter_mode fm)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFilterMode, (m_texref, fm)); }
void set_flags(unsigned int flags)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFlags, (m_texref, flags)); }
CUdeviceptr get_address()
{
CUdeviceptr result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddress, (&result, m_texref));
return result;
}
array *get_array()
{
CUarray result;
CUDAPP_CALL_GUARDED(cuTexRefGetArray, (&result, m_texref));
return new array(result, false);
}
CUaddress_mode get_address_mode(int dim)
{
CUaddress_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddressMode, (&result, m_texref, dim));
return result;
}
CUfilter_mode get_filter_mode()
{
CUfilter_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetFilterMode, (&result, m_texref));
return result;
}
#if CUDA_VERSION >= 2000
py::tuple get_format()
{
CUarray_format fmt;
int num_channels;
CUDAPP_CALL_GUARDED(cuTexRefGetFormat, (&fmt, &num_channels, m_texref));
return py::make_tuple(fmt, num_channels);
}
#endif
unsigned int get_flags()
{
unsigned int result;
CUDAPP_CALL_GUARDED(cuTexRefGetFlags, (&result, m_texref));
return result;
}
};
// module -------------------------------------------------------------------
class function;
class module : public boost::noncopyable, public context_dependent
{
private:
CUmodule m_module;
public:
module(CUmodule mod)
{ }
~module()
{
try
{
scoped_context_activation ca(get_context());
CUDAPP_CALL_GUARDED_CLEANUP(cuModuleUnload, (m_module));
}
CUmodule handle() const
{ return m_module; }
function get_function(const char *name);
py::tuple get_global(const char *name)
{
CUdeviceptr devptr;
unsigned int bytes;
CUDAPP_CALL_GUARDED(cuModuleGetGlobal, (&devptr, &bytes, m_module, name));
return py::make_tuple(devptr, bytes);
}
};
module *module_from_file(const char *filename)
{
CUmodule mod;
CUDAPP_CALL_GUARDED(cuModuleLoad, (&mod, filename));
return new module(mod);
}
texture_reference *module_get_texref(boost::shared_ptr<module> mod, const char *name)
{
CUtexref tr;
CUDAPP_CALL_GUARDED(cuModuleGetTexRef, (&tr, mod->handle(), name));
std::auto_ptr<texture_reference> result(
new texture_reference(tr, false));
result->set_module(mod);
return result.release();
}
// function -----------------------------------------------------------------
class function
{
private:
CUfunction m_function;
function(CUfunction func, std::string const &sym)
: m_function(func), m_symbol(sym)
{ }
void set_block_shape(int x, int y, int z)
{
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(
cuFuncSetBlockShape, (m_function, x, y, z), m_symbol);
}
void set_shared_size(unsigned int bytes)
{
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(
cuFuncSetSharedSize, (m_function, bytes), m_symbol);
}
void param_set_size(unsigned int bytes)
{
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(
cuParamSetSize, (m_function, bytes), m_symbol);
}
void param_set(int offset, unsigned int value)
{
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(
cuParamSeti, (m_function, offset, value), m_symbol);
}
void param_set(int offset, float value)
{
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(
cuParamSetf, (m_function, offset, value), m_symbol);
}
void param_setv(int offset, void *buf, unsigned long len)
{
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(
cuParamSetv, (m_function, offset, buf, len), m_symbol);
}
void param_set_texref(const texture_reference &tr)
{
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(cuParamSetTexRef, (m_function,
CU_PARAM_TR_DEFAULT, tr.handle()), m_symbol);
}
void launch()
{
CUDAPP_CALL_GUARDED_THREADED_WITH_TRACE_INFO(
cuLaunch, (m_function), m_symbol);
}
void launch_grid(int grid_width, int grid_height)
{
CUDAPP_CALL_GUARDED_THREADED_WITH_TRACE_INFO(
cuLaunchGrid, (m_function, grid_width, grid_height), m_symbol);
}
void launch_grid_async(int grid_width, int grid_height, const stream &s)
{
CUDAPP_CALL_GUARDED_THREADED_WITH_TRACE_INFO(
cuLaunchGridAsync, (m_function, grid_width, grid_height, s.handle()),
m_symbol);
}
#if CUDA_VERSION >= 2020
int get_attribute(CUfunction_attribute attr) const
{
int result;
CUDAPP_CALL_GUARDED_WITH_TRACE_INFO(
cuFuncGetAttribute, (&result, attr, m_function), m_symbol);
function module::get_function(const char *name)
{
CUfunction func;
CUDAPP_CALL_GUARDED(cuModuleGetFunction, (&func, m_module, name));
}
// device memory ------------------------------------------------------------
inline
py::tuple mem_get_info()
{
unsigned int free, total;
CUDAPP_CALL_GUARDED(cuMemGetInfo, (&free, &total));
return py::make_tuple(free, total);
}
inline
CUdeviceptr mem_alloc(unsigned long bytes)
{
CUdeviceptr devptr;
CUDAPP_CALL_GUARDED(cuMemAlloc, (&devptr, bytes));
return devptr;
}