Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// A C++ wrapper for CUDA (not quite yet)
#ifndef _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#define _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#include <cuda.h>
#include <stdexcept>
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <stack>
#include <iostream>
#include <vector>
#include <boost/python.hpp>
#ifdef CUDAPP_TRACE_CUDA
#define CUDAPP_CALL_GUARDED(NAME, ARGLIST) \
{ \
std::cerr << #NAME << std::endl; \
CUresult cu_status_code; \
Py_BEGIN_ALLOW_THREADS \
cu_status_code = NAME ARGLIST; \
Py_END_ALLOW_THREADS \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#else
#define CUDAPP_CALL_GUARDED(NAME, ARGLIST) \
{ \
CUresult cu_status_code; \
Py_BEGIN_ALLOW_THREADS \
cu_status_code = NAME ARGLIST; \
Py_END_ALLOW_THREADS \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#endif
namespace cuda
{
namespace py = boost::python;
class error : public std::runtime_error
{
private:
const char *m_routine;
CUresult m_code;
public:
error(const char *rout, CUresult c)
: std::runtime_error(
rout + std::string(" failed: ") + curesult_to_str(m_code)),
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
m_routine(rout), m_code(c)
{ }
const char *routine() const
{
return m_routine;
}
CUresult code() const
{
return m_code;
}
static const char *curesult_to_str(CUresult e)
{
switch (e)
{
case CUDA_SUCCESS: return "success";
case CUDA_ERROR_INVALID_VALUE: return "invalid value";
case CUDA_ERROR_OUT_OF_MEMORY: return "out of memory";
case CUDA_ERROR_NOT_INITIALIZED: return "not initialized";
#if CUDA_VERSION >= 2000
case CUDA_ERROR_DEINITIALIZED: return "deinitialized";
#endif
case CUDA_ERROR_NO_DEVICE: return "no device";
case CUDA_ERROR_INVALID_DEVICE: return "invalid device";
case CUDA_ERROR_INVALID_IMAGE: return "invalid image";
case CUDA_ERROR_INVALID_CONTEXT: return "invalid context";
case CUDA_ERROR_CONTEXT_ALREADY_CURRENT: return "context already current";
case CUDA_ERROR_MAP_FAILED: return "map failed";
case CUDA_ERROR_UNMAP_FAILED: return "unmap failed";
case CUDA_ERROR_ARRAY_IS_MAPPED: return "array is mapped";
case CUDA_ERROR_ALREADY_MAPPED: return "already mapped";
case CUDA_ERROR_NO_BINARY_FOR_GPU: return "no binary for gpu";
case CUDA_ERROR_ALREADY_ACQUIRED: return "already acquired";
case CUDA_ERROR_NOT_MAPPED: return "not mapped";
case CUDA_ERROR_INVALID_SOURCE: return "invalid source";
case CUDA_ERROR_FILE_NOT_FOUND: return "file not found";
case CUDA_ERROR_INVALID_HANDLE: return "invalid handle";
case CUDA_ERROR_NOT_FOUND: return "not found";
case CUDA_ERROR_NOT_READY: return "not ready";
case CUDA_ERROR_LAUNCH_FAILED: return "launch failed";
case CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES: return "launch out of resources";
case CUDA_ERROR_LAUNCH_TIMEOUT: return "launch timeout";
case CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING: return "launch incompatible texturing";
case CUDA_ERROR_UNKNOWN: return "unknown";
default: return "invalid error code";
}
}
};
// device -------------------------------------------------------------------
class context;
class device
{
private:
CUdevice m_device;
public:
device(CUdevice dev)
: m_device(dev)
{ }
static int count()
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetCount, (&result));
return result;
}
std::string name()
{
char buffer[1024];
CUDAPP_CALL_GUARDED(cuDeviceGetName, (buffer, sizeof(buffer), m_device));
return buffer;
}
py::tuple compute_capability()
{
int major, minor;
CUDAPP_CALL_GUARDED(cuDeviceComputeCapability, (&major, &minor, m_device));
return py::make_tuple(major, minor);
}
unsigned int total_memory()
{
unsigned int bytes;
CUDAPP_CALL_GUARDED(cuDeviceTotalMem, (&bytes, m_device));
return bytes;
}
int get_attribute(CUdevice_attribute attr)
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetAttribute, (&result, attr, m_device));
return result;
}
boost::shared_ptr<context> make_context(unsigned int flags);
};
inline
void init(unsigned int flags)
{
CUDAPP_CALL_GUARDED(cuInit, (flags));
}
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
device *make_device(int ordinal)
{
CUdevice result;
CUDAPP_CALL_GUARDED(cuDeviceGet, (&result, ordinal));
return new device(result);
}
// context ------------------------------------------------------------------
class context
{
private:
CUcontext m_context;
bool m_valid;
typedef std::stack<boost::weak_ptr<context>,
std::vector<boost::weak_ptr<context> > > context_stack_t;
static context_stack_t m_context_stack;
public:
context(CUcontext ctx, bool borrowed)
: m_context(ctx), m_valid(!borrowed)
{
if (borrowed)
{
CUDAPP_CALL_GUARDED(cuCtxAttach, (&m_context, 0));
m_valid = true;
}
}
context(context const &src)
: m_context(src.m_context), m_valid(false)
{
CUDAPP_CALL_GUARDED(cuCtxAttach, (&m_context, 0));
m_valid = true;
}
context &operator=(const context &src)
{
detach();
m_context = src.m_context;
CUDAPP_CALL_GUARDED(cuCtxAttach, (&m_context, 0));
m_valid = true;
}
~context()
{ detach(); }
void detach()
{
if (m_valid)
{
CUDAPP_CALL_GUARDED(cuCtxDetach, (m_context));
m_valid = false;
m_context_stack.pop();
}
}
#if CUDA_VERSION >= 2000
void pop()
{
CUcontext popped;
CUDAPP_CALL_GUARDED(cuCtxPopCurrent, (&popped));
if (popped != m_context)
throw std::runtime_error("popped the wrong context");
m_context_stack.pop();
}
static device get_device()
{
CUdevice dev;
CUDAPP_CALL_GUARDED(cuCtxGetDevice, (&dev));
return device(dev);
}
#endif
static void synchronize()
{ CUDAPP_CALL_GUARDED(cuCtxSynchronize, ()); }
static boost::shared_ptr<context> current_context()
{
return boost::shared_ptr<context>(m_context_stack.top());
}
friend class device;
friend void context_push(boost::shared_ptr<context> ctx);
};
boost::shared_ptr<context> device::make_context(unsigned int flags)
{
CUcontext ctx;
CUDAPP_CALL_GUARDED(cuCtxCreate, (&ctx, flags, m_device));
boost::shared_ptr<context> result(new context(ctx, false));
context::m_context_stack.push(result);
return result;
}
#if CUDA_VERSION >= 2000
void context_push(boost::shared_ptr<context> ctx)
{
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (ctx->m_context));
context::m_context_stack.push(ctx);
}
#endif
class context_dependent
{
private:
boost::shared_ptr<context> m_ward_context;
public:
context_dependent()
: m_ward_context(context::current_context())
{ }
};
// streams ------------------------------------------------------------------
class stream : public boost::noncopyable, public context_dependent
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
{
private:
CUstream m_stream;
public:
stream(unsigned int flags=0)
{ CUDAPP_CALL_GUARDED(cuStreamCreate, (&m_stream, flags)); }
~stream()
{ CUDAPP_CALL_GUARDED(cuStreamDestroy, (m_stream)); }
void synchronize()
{ CUDAPP_CALL_GUARDED(cuStreamSynchronize, (m_stream)); }
CUstream data() const
{ return m_stream; }
bool is_done() const
{
#ifdef TRACE_CUDA
std::cerr << "cuStreamQuery" << std::endl;
#endif
CUresult result = cuStreamQuery(m_stream);
switch (result)
{
case CUDA_SUCCESS:
return true;
case CUDA_ERROR_NOT_READY:
return false;
default:
throw error("cuStreamQuery", result);
}
}
};
// arrays -------------------------------------------------------------------
class array : public boost::noncopyable, public context_dependent
{
private:
CUarray m_array;
bool m_managed;
public:
array(const CUDA_ARRAY_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArrayCreate, (&m_array, &descr)); }
#if CUDA_VERSION >= 2000
array(const CUDA_ARRAY3D_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArray3DCreate, (&m_array, &descr)); }
#endif
array(CUarray ary, bool managed)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
{ }
~array()
{
if (m_managed)
{
CUDAPP_CALL_GUARDED(cuArrayDestroy, (m_array));
}
}
CUDA_ARRAY_DESCRIPTOR get_descriptor()
{
CUDA_ARRAY_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArrayGetDescriptor, (&result, m_array));
return result;
}
#if CUDA_VERSION >= 2000
CUDA_ARRAY3D_DESCRIPTOR get_descriptor_3d()
{
CUDA_ARRAY3D_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArray3DGetDescriptor, (&result, m_array));
return result;
}
#endif
CUarray data() const
{ return m_array; }
};
// texture reference --------------------------------------------------------
class module;
class texture_reference : public boost::noncopyable
{
private:
CUtexref m_texref;
bool m_managed;
// life support for array and module
boost::shared_ptr<array> m_array;
boost::shared_ptr<module> m_module;
public:
texture_reference()
: m_managed(true)
{ CUDAPP_CALL_GUARDED(cuTexRefCreate, (&m_texref)); }
texture_reference(CUtexref tr, bool managed)
: m_texref(tr), m_managed(managed)
{ }
~texture_reference()
{
if (m_managed)
{
CUDAPP_CALL_GUARDED(cuTexRefDestroy, (m_texref));
}
}
void set_module(boost::shared_ptr<module> mod)
{ m_module = mod; }
CUtexref data() const
{ return m_texref; }
void set_array(boost::shared_ptr<array> ary)
{
CUDAPP_CALL_GUARDED(cuTexRefSetArray, (m_texref,
ary->data(), CU_TRSA_OVERRIDE_FORMAT));
m_array = ary;
}
unsigned int set_address(CUdeviceptr dptr, unsigned int bytes)
{
unsigned int byte_offset;
CUDAPP_CALL_GUARDED(cuTexRefSetAddress, (&byte_offset,
m_texref, dptr, bytes));
m_array.reset();
return byte_offset;
}
void set_format(CUarray_format fmt, int num_packed_components)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFormat, (m_texref, fmt, num_packed_components)); }
void set_address_mode(int dim, CUaddress_mode am)
{ CUDAPP_CALL_GUARDED(cuTexRefSetAddressMode, (m_texref, dim, am)); }
void set_filter_mode(CUfilter_mode fm)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFilterMode, (m_texref, fm)); }
void set_flags(unsigned int flags)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFlags, (m_texref, flags)); }
CUdeviceptr get_address()
{
CUdeviceptr result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddress, (&result, m_texref));
return result;
}
array *get_array()
{
CUarray result;
CUDAPP_CALL_GUARDED(cuTexRefGetArray, (&result, m_texref));
return new array(result, false);
}
CUaddress_mode get_address_mode(int dim)
{
CUaddress_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddressMode, (&result, m_texref, dim));
return result;
}
CUfilter_mode get_filter_mode()
{
CUfilter_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetFilterMode, (&result, m_texref));
return result;
}
#if CUDA_VERSION >= 2000
py::tuple get_format()
{
CUarray_format fmt;
int num_channels;
CUDAPP_CALL_GUARDED(cuTexRefGetFormat, (&fmt, &num_channels, m_texref));
return py::make_tuple(fmt, num_channels);
}
#endif
unsigned int get_flags()
{
unsigned int result;
CUDAPP_CALL_GUARDED(cuTexRefGetFlags, (&result, m_texref));
return result;
}
};
// module -------------------------------------------------------------------
class function;
class module : public boost::noncopyable, public context_dependent
{
private:
CUmodule m_module;
public:
module(CUmodule mod)
{ }
~module()
{
CUDAPP_CALL_GUARDED(cuModuleUnload, (m_module));
}
CUmodule data() const
{ return m_module; }
function get_function(const char *name);
py::tuple get_global(const char *name)
{
CUdeviceptr devptr;
unsigned int bytes;
CUDAPP_CALL_GUARDED(cuModuleGetGlobal, (&devptr, &bytes, m_module, name));
return py::make_tuple(devptr, bytes);
}
};
module *module_from_file(const char *filename)
{
CUmodule mod;
CUDAPP_CALL_GUARDED(cuModuleLoad, (&mod, filename));
return new module(mod);
}
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
texture_reference *module_get_texref(boost::shared_ptr<module> mod, const char *name)
{
CUtexref tr;
CUDAPP_CALL_GUARDED(cuModuleGetTexRef, (&tr, mod->data(), name));
std::auto_ptr<texture_reference> result(
new texture_reference(tr, false));
result->set_module(mod);
return result.release();
}
// function -----------------------------------------------------------------
class function
{
private:
CUfunction m_function;
public:
function(CUfunction func)
: m_function(func)
{ }
void set_block_shape(int x, int y, int z)
{ CUDAPP_CALL_GUARDED(cuFuncSetBlockShape, (m_function, x, y, z)); }
void set_shared_size(unsigned int bytes)
{ CUDAPP_CALL_GUARDED(cuFuncSetSharedSize, (m_function, bytes)); }
void param_set_size(unsigned int bytes)
{ CUDAPP_CALL_GUARDED(cuParamSetSize, (m_function, bytes)); }
void param_set(int offset, unsigned int value)
{ CUDAPP_CALL_GUARDED(cuParamSeti, (m_function, offset, value)); }
void param_set(int offset, float value)
{ CUDAPP_CALL_GUARDED(cuParamSetf, (m_function, offset, value)); }
void param_setv(int offset, void *buf, unsigned long len)
{
CUDAPP_CALL_GUARDED(cuParamSetv, (m_function, offset, buf, len));
}
void param_set_texref(const texture_reference &tr)
{
CUDAPP_CALL_GUARDED(cuParamSetTexRef, (m_function,
CU_PARAM_TR_DEFAULT, tr.data()));
}
void launch()
{ CUDAPP_CALL_GUARDED(cuLaunch, (m_function)); }
void launch_grid(int grid_width, int grid_height)
{ CUDAPP_CALL_GUARDED(cuLaunchGrid, (m_function, grid_width, grid_height)); }
void launch_grid_async(int grid_width, int grid_height, const stream &s)
{ CUDAPP_CALL_GUARDED(cuLaunchGridAsync, (m_function, grid_width, grid_height, s.data())); }
};
function module::get_function(const char *name)
{
CUfunction func;
CUDAPP_CALL_GUARDED(cuModuleGetFunction, (&func, m_module, name));
return function(func);
}
// device memory ------------------------------------------------------------
inline
py::tuple mem_get_info()
{
unsigned int free, total;
CUDAPP_CALL_GUARDED(cuMemGetInfo, (&free, &total));
return py::make_tuple(free, total);
}
inline
CUdeviceptr mem_alloc(unsigned long bytes)
{
CUdeviceptr devptr;
CUDAPP_CALL_GUARDED(cuMemAlloc, (&devptr, bytes));
return devptr;
}
inline
void mem_free(CUdeviceptr devptr)
{
CUDAPP_CALL_GUARDED(cuMemFree, (devptr));
}
class device_allocation : public boost::noncopyable, public context_dependent
CUdeviceptr m_devptr;
public:
device_allocation(CUdeviceptr devptr)
void free()
{
if (m_valid)
{
mem_free(m_devptr);
m_valid = false;
}
else
throw cuda::error("device_allocation::free", CUDA_ERROR_INVALID_HANDLE);
}
~device_allocation()
{
}
operator CUdeviceptr()
{ return m_devptr; }
};
inline
device_allocation *make_device_allocation(unsigned long bytes)
py::tuple mem_alloc_pitch(
unsigned int width, unsigned int height, unsigned int access_size)
{
CUdeviceptr devptr;
unsigned int pitch;
CUDAPP_CALL_GUARDED(cuMemAllocPitch, (&devptr, &pitch, width, height, access_size));
return py::make_tuple(
new device_allocation(devptr),
pitch);
}
py::tuple mem_get_address_range(CUdeviceptr ptr)
{
CUdeviceptr base;
unsigned int size;
CUDAPP_CALL_GUARDED(cuMemGetAddressRange, (&base, &size, ptr));
return py::make_tuple(base, size);
}
void memcpy_dtoa(array const &ary, unsigned int index, CUdeviceptr src, unsigned int len)
{ CUDAPP_CALL_GUARDED(cuMemcpyDtoA, (ary.data(), index, src, len)); }
void memcpy_atod(CUdeviceptr dst, array const &ary, unsigned int index, unsigned int len)
{ CUDAPP_CALL_GUARDED(cuMemcpyAtoD, (dst, ary.data(), index, len)); }
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
void memcpy_atoa(
array const &dst, unsigned int dst_index,
array const &src, unsigned int src_index,
unsigned int len)
{ CUDAPP_CALL_GUARDED(cuMemcpyAtoA, (dst.data(), dst_index, src.data(), src_index, len)); }
// structured memcpy --------------------------------------------------------
#define MEMCPY_SETTERS \
void set_src_host(py::object buf_py) \
{ \
srcMemoryType = CU_MEMORYTYPE_HOST; \
Py_ssize_t len; \
if (PyObject_AsReadBuffer(buf_py.ptr(), &srcHost, &len)) \
throw py::error_already_set(); \
} \
\
void set_src_array(array const &ary) \
{ \
srcMemoryType = CU_MEMORYTYPE_ARRAY; \
srcArray = ary.data(); \
} \
\
void set_src_device(CUdeviceptr devptr) \
{ \
srcMemoryType = CU_MEMORYTYPE_DEVICE; \
srcDevice = devptr; \
} \
\
void set_dst_host(py::object buf_py) \
{ \
dstMemoryType = CU_MEMORYTYPE_HOST; \
Py_ssize_t len; \
if (PyObject_AsWriteBuffer(buf_py.ptr(), &dstHost, &len)) \
throw py::error_already_set(); \
} \
\
void set_dst_array(array const &ary) \
{ \
dstMemoryType = CU_MEMORYTYPE_ARRAY; \
dstArray = ary.data(); \
} \
\
void set_dst_device(CUdeviceptr devptr) \
{ \
dstMemoryType = CU_MEMORYTYPE_DEVICE; \
dstDevice = devptr; \
}
struct memcpy_2d : public CUDA_MEMCPY2D
{
memcpy_2d()
{
srcXInBytes = 0;
srcY = 0;
dstXInBytes = 0;
dstY = 0;
}
MEMCPY_SETTERS;
void execute(bool aligned) const
{
if (aligned)
{ CUDAPP_CALL_GUARDED(cuMemcpy2D, (this)); }
else
{ CUDAPP_CALL_GUARDED(cuMemcpy2DUnaligned, (this)); }
}
void execute_async(const stream &s) const
{ CUDAPP_CALL_GUARDED(cuMemcpy2DAsync, (this, s.data())); }
};
#if CUDA_VERSION >= 2000
struct memcpy_3d : public CUDA_MEMCPY3D
{
memcpy_3d()
{
reserved0 = 0;
reserved1 = 0;
srcXInBytes = 0;
srcY = 0;
srcZ = 0;
dstXInBytes = 0;
dstY = 0;
dstZ = 0;
}
MEMCPY_SETTERS;
void execute() const
{
CUDAPP_CALL_GUARDED(cuMemcpy3D, (this));
}
void execute_async(const stream &s) const
{ CUDAPP_CALL_GUARDED(cuMemcpy3DAsync, (this, s.data())); }
};
#endif
// host memory --------------------------------------------------------------
struct host_allocation : public boost::noncopyable
{
private:
void *m_data;
public:
host_allocation(unsigned bytesize)
: m_data(0)
{ CUDAPP_CALL_GUARDED(cuMemAllocHost, (&m_data, bytesize)); }
~host_allocation()
{ CUDAPP_CALL_GUARDED(cuMemFreeHost, (m_data)); }
void *data()
{ return m_data; }
};
// events -------------------------------------------------------------------
class event : public boost::noncopyable, public context_dependent
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
{
private:
CUevent m_event;
public:
event(unsigned int flags=0)
{ CUDAPP_CALL_GUARDED(cuEventCreate, (&m_event, flags)); }
~event()
{ CUDAPP_CALL_GUARDED(cuEventDestroy, (m_event)); }
void record()
{ CUDAPP_CALL_GUARDED(cuEventRecord, (m_event, 0)); }
void record_in_stream(stream const &str)
{ CUDAPP_CALL_GUARDED(cuEventRecord, (m_event, str.data())); }
void synchronize()
{ CUDAPP_CALL_GUARDED(cuEventSynchronize, (m_event)); }
bool query() const
{
#ifdef TRACE_CUDA
std::cerr << "cuEventQuery" << std::endl;
#endif
CUresult result = cuEventQuery(m_event);
switch (result)
{
case CUDA_SUCCESS:
return true;
case CUDA_ERROR_NOT_READY:
return false;
default:
throw error("cuEventQuery", result);
}
}
float time_since(event const &start)
{
float result;
CUDAPP_CALL_GUARDED(cuEventElapsedTime, (&result, start.m_event, m_event));
return result;
}
float time_till(event const &end)
{
float result;
CUDAPP_CALL_GUARDED(cuEventElapsedTime, (&result, m_event, end.m_event));
return result;
}
};
}
#endif