Skip to content
Snippets Groups Projects
wave-op-var-velocity.py 7.39 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = """
    Copyright (C) 2020 Andreas Kloeckner
    Copyright (C) 2021 University of Illinois Board of Trustees
    """
    
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    
    import logging
    
    
    import numpy as np
    import numpy.linalg as la  # noqa
    
    import pyopencl.tools as cl_tools
    
    from meshmode.mesh import BTAG_ALL, BTAG_NONE  # noqa
    
    from pytools.obj_array import flat_obj_array
    
    import grudge.geometry as geo
    import grudge.op as op
    from grudge.array_context import PyOpenCLArrayContext
    
    from grudge.discretization import make_discretization_collection
    
    from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD, as_dofdesc
    
    from grudge.shortcuts import make_visualizer, rk4_step
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    logger = logging.getLogger(__name__)
    
    
    def wave_flux(actx, dcoll, c, w_tpair):
    
        dd_quad = dd.with_discr_tag(DISCR_TAG_QUAD)
    
        normal = geo.normal(actx, dcoll, dd)
    
    
        flux_weak = flat_obj_array(
                np.dot(v.avg, normal),
    
    Matt Smith's avatar
    Matt Smith committed
        flux_weak += flat_obj_array(
    
                0.5*normal*np.dot(normal, v.ext-v.int),
    
    Matt Smith's avatar
    Matt Smith committed
        # FIXME this flux is only correct for continuous c
    
        dd_allfaces_quad = dd_quad.with_dtag("all_faces")
    
        c_quad = op.project(dcoll, "vol", dd_quad, c)
        flux_quad = op.project(dcoll, dd, dd_quad, flux_weak)
    
        return op.project(dcoll, dd_quad, dd_allfaces_quad, c_quad*flux_quad)
    
    def wave_operator(actx, dcoll, c, w):
    
        dir_u = op.project(dcoll, "vol", BTAG_ALL, u)
        dir_v = op.project(dcoll, "vol", BTAG_ALL, v)
    
        dir_bval = flat_obj_array(dir_u, dir_v)
        dir_bc = flat_obj_array(-dir_u, dir_v)
    
    
        dd_quad = as_dofdesc("vol", DISCR_TAG_QUAD)
    
        c_quad = op.project(dcoll, "vol", dd_quad, c)
        w_quad = op.project(dcoll, "vol", dd_quad, w)
    
        u_quad = w_quad[0]
        v_quad = w_quad[1:]
    
    
        dd_allfaces_quad = as_dofdesc("all_faces", DISCR_TAG_QUAD)
    
            op.inverse_mass(
                dcoll,
                flat_obj_array(
                    -op.weak_local_div(dcoll, dd_quad, c_quad*v_quad),
    
                    -op.weak_local_grad(dcoll, dd_quad, c_quad*u_quad)
    
                    # pylint: disable=invalid-unary-operand-type
    
                ) + op.face_mass(
                    dcoll,
                    dd_allfaces_quad,
                    wave_flux(
    
                        w_tpair=op.bdry_trace_pair(dcoll,
                                                   BTAG_ALL,
                                                   interior=dir_bval,
                                                   exterior=dir_bc)
    
                        wave_flux(actx, dcoll, c=c, w_tpair=tpair)
    
                        for tpair in op.interior_trace_pairs(dcoll, w)
    
    def estimate_rk4_timestep(actx, dcoll, c):
        from grudge.dt_utils import characteristic_lengthscales
    
        local_dts = characteristic_lengthscales(actx, dcoll) / c
    
        return op.nodal_min(dcoll, "vol", local_dts)
    
    def bump(actx, dcoll, t=0, width=0.05, center=None):
    
        if center is None:
            center = np.array([0.2, 0.35, 0.1])
    
    
        nodes = actx.thaw(dcoll.nodes())
    
        center_dist = flat_obj_array([
            nodes[i] - center[i]
    
            ])
    
        return (
            np.cos(source_omega*t)
            * actx.np.exp(
                -np.dot(center_dist, center_dist)
                / width**2))
    
    
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    def main(ctx_factory, dim=2, order=3, visualize=False):
        cl_ctx = ctx_factory()
    
        queue = cl.CommandQueue(cl_ctx)
    
        actx = PyOpenCLArrayContext(
            queue,
    
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
            force_device_scalars=True,
    
    
        nel_1d = 16
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(
                a=(-0.5,)*dim,
                b=(0.5,)*dim,
    
                nelements_per_axis=(nel_1d,)*dim)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        logger.info("%d elements", mesh.nelements)
    
        from meshmode.discretization.poly_element import (
            QuadratureSimplexGroupFactory,
            default_simplex_group_factory,
        )
    
        dcoll = make_discretization_collection(
    
            actx, mesh,
            discr_tag_to_group_factory={
    
                DISCR_TAG_BASE: default_simplex_group_factory(base_dim=dim, order=order),
    
                DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(3*order),
            }
        )
    
        c = 0.2 + 0.8*bump(actx, dcoll, center=np.zeros(3), width=0.5)
    
        dt = actx.to_numpy(0.5 * estimate_rk4_timestep(actx, dcoll, c=1))
    
                bump(actx, dcoll, ),
                [dcoll.zeros(actx) for i in range(dcoll.dim)]
    
        vis = make_visualizer(dcoll)
    
            return wave_operator(actx, dcoll, c=c, w=w)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        logger.info("dt = %g", dt)
    
    
        t = 0
        t_final = 3
        istep = 0
        while t < t_final:
            fields = rk4_step(fields, t, dt, rhs)
    
    
            l2norm = actx.to_numpy(op.norm(dcoll, fields[0], 2))
    
    
                linfnorm = actx.to_numpy(op.norm(dcoll, fields[0], np.inf))
                nodalmax = actx.to_numpy(op.nodal_max(dcoll, "vol", fields[0]))
                nodalmin = actx.to_numpy(op.nodal_min(dcoll, "vol", fields[0]))
    
                logger.info("step: %d t: %.8e L2: %.8e Linf: %.8e "
                            "sol max: %.8e sol min: %.8e",
                            istep, t, l2norm, linfnorm, nodalmax, nodalmin)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
                if visualize:
    
                        f"fld-wave-eager-var-velocity-{istep:04d}.vtu",
    
                        [
                            ("c", c),
                            ("u", fields[0]),
                            ("v", fields[1:]),
    
            # NOTE: These are here to ensure the solution is bounded for the
            # time interval specified
    
            assert l2norm < 1
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        import argparse
    
        parser = argparse.ArgumentParser()
        parser.add_argument("--dim", default=2, type=int)
        parser.add_argument("--order", default=3, type=int)
        parser.add_argument("--visualize", action="store_true")
        args = parser.parse_args()
    
        logging.basicConfig(level=logging.INFO)
        main(cl.create_some_context,
             dim=args.dim,
             order=args.order,
             visualize=args.visualize)