Skip to content
Snippets Groups Projects
wave-op-var-velocity.py 5.96 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = "Copyright (C) 2020 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    import numpy as np
    import numpy.linalg as la  # noqa
    import pyopencl as cl
    
    
    from pytools.obj_array import flat_obj_array
    
    
    from meshmode.array_context import PyOpenCLArrayContext
    from meshmode.dof_array import thaw
    
    from meshmode.mesh import BTAG_ALL, BTAG_NONE  # noqa
    
    
    from grudge.discretization import DGDiscretizationWithBoundaries
    import grudge.op as op
    
    from grudge.shortcuts import make_visualizer
    from grudge.symbolic.primitives import TracePair, QTAG_NONE, DOFDesc
    
    
    # {{{ wave equation bits
    
    def wave_flux(discr, c, w_tpair):
        dd = w_tpair.dd
        dd_quad = dd.with_qtag("vel_prod")
    
        u = w_tpair[0]
        v = w_tpair[1:]
    
    
        normal = thaw(u.int.array_context, op.normal(discr, dd))
    
    
        flux_weak = flat_obj_array(
                np.dot(v.avg, normal),
    
    Matt Smith's avatar
    Matt Smith committed
        flux_weak += flat_obj_array(
    
                0.5*normal*np.dot(normal, v.ext-v.int),
    
    Matt Smith's avatar
    Matt Smith committed
        # FIXME this flux is only correct for continuous c
    
        dd_allfaces_quad = dd_quad.with_dtag("all_faces")
    
        c_quad = op.project(discr, "vol", dd_quad, c)
        flux_quad = op.project(discr, dd, dd_quad, flux_weak)
    
        return op.project(discr, dd_quad, dd_allfaces_quad, c_quad*flux_quad)
    
    
    
    def wave_operator(discr, c, w):
        u = w[0]
        v = w[1:]
    
    
        dir_u = op.project(discr, "vol", BTAG_ALL, u)
        dir_v = op.project(discr, "vol", BTAG_ALL, v)
    
        dir_bval = flat_obj_array(dir_u, dir_v)
        dir_bc = flat_obj_array(-dir_u, dir_v)
    
        dd_quad = DOFDesc("vol", "vel_prod")
    
        c_quad = op.project(discr, "vol", dd_quad, c)
        w_quad = op.project(discr, "vol", dd_quad, w)
    
        u_quad = w_quad[0]
        v_quad = w_quad[1:]
    
        dd_allfaces_quad = DOFDesc("all_faces", "vel_prod")
    
        return (
    
                op.inverse_mass(discr,
    
                        -op.weak_local_div(discr, dd_quad, c_quad*v_quad),
                        -op.weak_local_grad(discr, dd_quad, c_quad*u_quad)
    
    Matt Smith's avatar
    Matt Smith committed
                    +  # noqa: W504
    
                    op.face_mass(discr,
    
                        wave_flux(discr, c=c, w_tpair=op.interior_trace_pair(discr, w))
    
                        + wave_flux(discr, c=c, w_tpair=TracePair(
    
                            BTAG_ALL, interior=dir_bval, exterior=dir_bc))
    
                        ))
                    )
    
    # }}}
    
    
    def rk4_step(y, t, h, f):
        k1 = f(t, y)
        k2 = f(t+h/2, y + h/2*k1)
        k3 = f(t+h/2, y + h/2*k2)
        k4 = f(t+h, y + h*k3)
        return y + h/6*(k1 + 2*k2 + 2*k3 + k4)
    
    
    def bump(actx, discr, t=0, width=0.05, center=None):
        if center is None:
            center = np.array([0.2, 0.35, 0.1])
    
        center = center[:discr.dim]
        source_omega = 3
    
    
        nodes = thaw(actx, op.nodes(discr))
    
        center_dist = flat_obj_array([
            nodes[i] - center[i]
            for i in range(discr.dim)
            ])
    
        return (
            np.cos(source_omega*t)
            * actx.np.exp(
                -np.dot(center_dist, center_dist)
                / width**2))
    
    
    def main():
        cl_ctx = cl.create_some_context()
        queue = cl.CommandQueue(cl_ctx)
        actx = PyOpenCLArrayContext(queue)
    
        dim = 2
        nel_1d = 16
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(
                a=(-0.5,)*dim,
                b=(0.5,)*dim,
                n=(nel_1d,)*dim)
    
        order = 3
    
        if dim == 2:
            # no deep meaning here, just a fudge factor
            dt = 0.75/(nel_1d*order**2)
        elif dim == 3:
            # no deep meaning here, just a fudge factor
            dt = 0.45/(nel_1d*order**2)
        else:
            raise ValueError("don't have a stable time step guesstimate")
    
        print("%d elements" % mesh.nelements)
    
        from meshmode.discretization.poly_element import \
                QuadratureSimplexGroupFactory, \
                PolynomialWarpAndBlendGroupFactory
    
        discr = DGDiscretizationWithBoundaries(actx, mesh,
    
                quad_tag_to_group_factory={
                    QTAG_NONE: PolynomialWarpAndBlendGroupFactory(order),
                    "vel_prod": QuadratureSimplexGroupFactory(3*order),
                    })
    
        # bounded above by 1
        c = 0.2 + 0.8*bump(actx, discr, center=np.zeros(3), width=0.5)
    
        fields = flat_obj_array(
                bump(actx, discr, ),
                [discr.zeros(actx) for i in range(discr.dim)]
                )
    
        vis = make_visualizer(discr, order+3 if dim == 2 else order)
    
        def rhs(t, w):
            return wave_operator(discr, c=c, w=w)
    
        t = 0
        t_final = 3
        istep = 0
        while t < t_final:
            fields = rk4_step(fields, t, dt, rhs)
    
            if istep % 10 == 0:
    
                print(istep, t, op.norm(discr, fields[0], p=2))
    
                vis.write_vtk_file("fld-wave-eager-var-velocity-%04d.vtu" % istep,
                        [
                            ("c", c),
                            ("u", fields[0]),
                            ("v", fields[1:]),
                            ])
    
            t += dt
            istep += 1
    
    
    if __name__ == "__main__":
        main()
    
    # vim: foldmethod=marker