Newer
Older
"""Study of operator fusion (inlining) for time integration operators in Grudge.
from __future__ import division, print_function
__copyright__ = """
Copyright (C) 2015 Andreas Kloeckner
Copyright (C) 2019 Matt Wala
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import logging
import numpy as np
import dagrt.language as lang
import pymbolic.primitives as p
import grudge.symbolic.mappers as gmap
from grudge.function_registry import base_function_registry
from pymbolic.mapper import Mapper
from pymbolic.mapper.evaluator import EvaluationMapper \
as PymbolicEvaluationMapper
from grudge import sym, bind, DGDiscretizationWithBoundaries
from leap.rk import LSRK4Method
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# {{{ topological sort
def topological_sort(stmts, root_deps):
id_to_stmt = {stmt.id: stmt for stmt in stmts}
ordered_stmts = []
satisfied = set()
def satisfy_dep(name):
if name in satisfied:
return
stmt = id_to_stmt[name]
satisfy_dep(dep)
ordered_stmts.append(stmt)
satisfied.add(name)
for d in root_deps:
satisfy_dep(d)
return ordered_stmts
# }}}
# Use evaluation, not identity mappers to propagate symbolic vectors to
# outermost level.
class DagrtToGrudgeRewriter(PymbolicEvaluationMapper):
def __init__(self, context):
self.context = context
def map_variable(self, expr):
return self.context[expr.name]
def map_call(self, expr):
raise ValueError("function call not expected")
class GrudgeArgSubstitutor(gmap.SymbolicEvaluator):
def __init__(self, args):
super().__init__(context={})
self.args = args
def map_grudge_variable(self, expr):
if expr.name in self.args:
return self.args[expr.name]
def transcribe_phase(dag, field_var_name, field_components, phase_name,
sym_operator):
Arguments:
dag: The Dagrt code object for the time integrator
field_var_name: The name of the simulation variable
field_components: The number of components (fields) in the variable
sym_operator: The Grudge symbolic expression to substitue for the
right-hand side evaluation in the Dagrt code
"""
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
sym_operator = gmap.OperatorBinder()(sym_operator)
phase = dag.phases[phase_name]
ctx = {
"<t>": sym.var("input_t", sym.DD_SCALAR),
"<dt>": sym.var("input_dt", sym.DD_SCALAR),
f"<state>{field_var_name}": sym.make_sym_array(
f"input_{field_var_name}", field_components),
f"<p>residual": sym.make_sym_array(
"input_residual", field_components),
}
rhs_name = f"<func>{field_var_name}"
output_vars = [v for v in ctx]
yielded_states = []
from dagrt.codegen.transform import isolate_function_calls_in_phase
ordered_stmts = topological_sort(
isolate_function_calls_in_phase(
phase,
dag.get_stmt_id_generator(),
dag.get_var_name_generator()).statements,
phase.depends_on)
for stmt in ordered_stmts:
if stmt.condition is not True:
raise NotImplementedError(
"non-True condition (in statement '%s') not supported"
% stmt.id)
if isinstance(stmt, lang.Nop):
pass
if not isinstance(stmt.lhs, p.Variable):
raise NotImplementedError("lhs of statement %s is not a variable: %s"
% (stmt.id, stmt.lhs))
ctx[stmt.lhs.name] = sym.cse(
DagrtToGrudgeRewriter(ctx)(stmt.rhs),
(
stmt.lhs.name
.replace("<", "")
.replace(">", "")))
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
elif isinstance(stmt, lang.AssignFunctionCall):
if stmt.function_id != rhs_name:
raise NotImplementedError(
"statement '%s' calls unsupported function '%s'"
% (stmt.id, stmt.function_id))
if stmt.parameters:
raise NotImplementedError(
"statement '%s' calls function '%s' with positional arguments"
% (stmt.id, stmt.function_id))
kwargs = {name: sym.cse(DagrtToGrudgeRewriter(ctx)(arg))
for name, arg in stmt.kw_parameters.items()}
if len(stmt.assignees) != 1:
raise NotImplementedError(
"statement '%s' calls function '%s' "
"with more than one LHS"
% (stmt.id, stmt.function_id))
assignee, = stmt.assignees
ctx[assignee] = GrudgeArgSubstitutor(kwargs)(sym_operator)
elif isinstance(stmt, lang.YieldState):
d2g = DagrtToGrudgeRewriter(ctx)
yielded_states.append(
(
stmt.time_id,
d2g(stmt.time),
stmt.component_id,
d2g(stmt.expression)))
else:
raise NotImplementedError("statement %s is of unsupported type ''%s'"
% (stmt.id, type(stmt).__name__))
return output_vars, [ctx[ov] for ov in output_vars], yielded_states
def __init__(self, queue, component_getter):
self.queue = queue
self.component_getter = component_getter
def get_initial_context(self, fields, t_start, dt):
from pytools.obj_array import join_fields
# Flatten fields.
flattened_fields = []
for field in fields:
if isinstance(field, list):
flattened_fields.extend(field)
else:
flattened_fields.append(field)
flattened_fields = join_fields(*flattened_fields)
del fields
return {
"input_t": t_start,
"input_dt": dt,
self.state_name: flattened_fields,
"input_residual": flattened_fields,
}
def set_up_stepper(self, discr, field_var_name, sym_rhs, num_fields,
function_registry=base_function_registry,
dt_method = LSRK4Method(component_id=field_var_name)
dt_code = dt_method.generate()
self.field_var_name = field_var_name
self.state_name = f"input_{field_var_name}"
# Transcribe the phase.
output_vars, results, yielded_states = transcribe_phase(
dt_code, field_var_name, num_fields,
"primary", sym_rhs)
# Build the bound operator for the time integrator.
output_t = results[0]
output_dt = results[1]
output_states = results[2]
output_residuals = results[3]
assert len(output_states) == num_fields
assert len(output_states) == len(output_residuals)
from pytools.obj_array import join_fields
flattened_results = join_fields(output_t, output_dt, *output_states)
discr, flattened_results,
function_registry=function_registry,
exec_mapper_factory=exec_mapper_factory)
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def run(self, fields, t_start, dt, t_end, return_profile_data=False):
context = self.get_initial_context(fields, t_start, dt)
t = t_start
while t <= t_end:
if return_profile_data:
profile_data = dict()
else:
profile_data = None
results = self.bound_op(
self.queue,
profile_data=profile_data,
**context)
if return_profile_data:
results = results[0]
t = results[0]
context["input_t"] = t
context["input_dt"] = results[1]
output_states = results[2:]
context[self.state_name] = output_states
result = (t, self.component_getter(output_states))
if return_profile_data:
result += (profile_data,)
yield result
class RK4TimeStepper(RK4TimeStepperBase):
def __init__(self, queue, discr, field_var_name, grudge_bound_op,
num_fields, component_getter, exec_mapper_factory=ExecutionMapper):
"""Arguments:
field_var_name: The name of the simulation variable
grudge_bound_op: The BoundExpression for the right-hand side
num_fields: The number of components in the simulation variable
component_getter: A function, which, given an object array
representing the simulation variable, splits the array into
its components
"""
# Construct sym_rhs to have the effect of replacing the RHS calls in the
# dagrt code with calls of the grudge operator.
from grudge.symbolic.primitives import FunctionSymbol, Variable
call = sym.cse(
FunctionSymbol("grudge_op")(*(
(Variable("t", dd=sym.DD_SCALAR),)
+ tuple(
Variable(field_var_name, dd=sym.DD_VOLUME)[i]
for i in range(num_fields)))))
from pytools.obj_array import join_fields
sym_rhs = join_fields(*(call[i] for i in range(num_fields)))
self.queue = queue
self.grudge_bound_op = grudge_bound_op
from grudge.function_registry import register_external_function
freg = register_external_function(
base_function_registry,
"grudge_op",
implementation=self._bound_op,
dd=sym.DD_VOLUME)
discr, field_var_name, sym_rhs, num_fields,
freg,
exec_mapper_factory)
def _bound_op(self, queue, t, *args, profile_data=None):
from pytools.obj_array import join_fields
context = {
"t": t,
self.field_var_name: join_fields(*args)}
queue, profile_data=profile_data, **context)
if profile_data is not None:
result = result[0]
return result
def get_initial_context(self, fields, t_start, dt):
context = super().get_initial_context(fields, t_start, dt)
context["grudge_op"] = self._bound_op
return context
class FusedRK4TimeStepper(RK4TimeStepperBase):
def __init__(self, queue, discr, field_var_name, sym_rhs, num_fields,
component_getter, exec_mapper_factory=ExecutionMapper):
discr, field_var_name, sym_rhs, num_fields,
base_function_registry,
exec_mapper_factory)
def get_strong_wave_op_with_discr(cl_ctx, dims=2, order=4):
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dims,
b=(0.5,)*dims,
logger.debug("%d elements", mesh.nelements)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
source_center = np.array([0.1, 0.22, 0.33])[:dims]
source_width = 0.05
source_omega = 3
sym_x = sym.nodes(mesh.dim)
sym_source_center_dist = sym_x - source_center
sym_t = sym.ScalarVariable("t")
from grudge.models.wave import StrongWaveOperator
from meshmode.mesh import BTAG_ALL, BTAG_NONE
op = StrongWaveOperator(-0.1, dims,
source_f=(
sym.sin(source_omega*sym_t)
* sym.exp(
-np.dot(sym_source_center_dist, sym_source_center_dist)
/ source_width**2)),
dirichlet_tag=BTAG_NONE,
neumann_tag=BTAG_NONE,
radiation_tag=BTAG_ALL,
flux_type="upwind")
op.check_bc_coverage(mesh)
return (op, discr)
def get_strong_wave_component(state_component):
return (state_component[0], state_component[1:])
# {{{ equivalence check between fused and non-fused versions
def test_stepper_equivalence(ctx_factory, order=4):
cl_ctx = ctx_factory()
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
queue = cl.CommandQueue(cl_ctx)
dims = 2
op, discr = get_strong_wave_op_with_discr(cl_ctx, dims=dims, order=order)
if dims == 2:
dt = 0.04
elif dims == 3:
dt = 0.02
from pytools.obj_array import join_fields
ic = join_fields(discr.zeros(queue),
[discr.zeros(queue) for i in range(discr.dim)])
bound_op = bind(discr, op.sym_operator())
stepper = RK4TimeStepper(
queue, discr, "w", bound_op, 1 + discr.dim, get_strong_wave_component)
fused_stepper = FusedRK4TimeStepper(
queue, discr, "w", op.sym_operator(), 1 + discr.dim,
get_strong_wave_component)
t_start = 0
t_end = 0.5
print("dt=%g nsteps=%d" % (dt, nsteps))
step = 0
norm = bind(discr, sym.norm(2, sym.var("u_ref") - sym.var("u")))
fused_steps = fused_stepper.run(ic, t_start, dt, t_end)
for t_ref, (u_ref, v_ref) in stepper.run(ic, t_start, dt, t_end):
step += 1
t, (u, v) = next(fused_steps)
assert t == t_ref, step
assert norm(queue, u=u, u_ref=u_ref) <= 1e-13, step
# }}}
# {{{ execution mapper wrapper
class ExecutionMapperWrapper(Mapper):
def __init__(self, queue, context, bound_op):
self.inner_mapper = ExecutionMapper(queue, context, bound_op)
self.queue = queue
self.context = context
self.bound_op = bound_op
def map_variable(self, expr):
# Needed, because bound op execution can ask for variable values.
return self.inner_mapper.map_variable(expr)
def map_grudge_variable(self, expr):
# See map_variable()
return self.inner_mapper.map_grudge_variable(expr)
# }}}
class ExecutionMapperWithMemOpCounting(ExecutionMapperWrapper):
# This is a skeleton implementation that only has just enough functionality
# for the wave-min example to work.
def map_profiled_call(self, expr, profile_data):
args = [self.inner_mapper.rec(p) for p in expr.parameters]
return self.inner_mapper.function_registry[expr.function.name](
self.queue, *args, profile_data=profile_data)
def map_profiled_essentially_elementwise_linear(self, op, field_expr,
profile_data):
result = getattr(self.inner_mapper, op.mapper_method)(op, field_expr)
if profile_data is not None:
# We model the cost to load the input and write the output. In
# particular, we assume the elementwise matrices are negligible in
# size and thus ignorable.
field = self.inner_mapper.rec(field_expr)
profile_data["bytes_read"] = (
profile_data.get("bytes_read", 0) + field.nbytes)
profile_data["bytes_written"] = (
profile_data.get("bytes_written", 0) + result.nbytes)
if op.mapper_method == "map_interpolation":
profile_data["interp_bytes_read"] = (
profile_data.get("interp_bytes_read", 0) + field.nbytes)
profile_data["interp_bytes_written"] = (
profile_data.get("interp_bytes_written", 0) + result.nbytes)
def process_assignment_expr(self, expr, profile_data):
if isinstance(expr, p.Call):
assert expr.mapper_method == "map_call"
val = self.map_profiled_call(expr, profile_data)
elif isinstance(expr, sym.OperatorBinding):
if isinstance(
expr.op,
(
# TODO: Not comprehensive.
op.InterpolationOperator,
op.RefFaceMassOperator,
op.RefInverseMassOperator,
op.OppositeInteriorFaceSwap)):
val = self.map_profiled_essentially_elementwise_linear(
expr.op, expr.field, profile_data)
else:
assert False, ("unknown operator: %s" % expr.op)
else:
logger.debug("assignment not profiled: %s", expr)
val = self.inner_mapper.rec(expr)
def map_insn_assign(self, insn, profile_data):
result = []
for name, expr in zip(insn.names, insn.exprs):
result.append((name, self.process_assignment_expr(expr, profile_data)))
return result, []
def map_insn_loopy_kernel(self, insn, profile_data):
kwargs = {}
kdescr = insn.kernel_descriptor
for name, expr in six.iteritems(kdescr.input_mappings):
val = self.inner_mapper.rec(expr)
kwargs[name] = val
assert not isinstance(val, np.ndarray)
if profile_data is not None and isinstance(val, pyopencl.array.Array):
profile_data["bytes_read"] = (
profile_data.get("bytes_read", 0) + val.nbytes)
profile_data["bytes_read_by_scalar_assignments"] = (
profile_data.get("bytes_read_by_scalar_assignments", 0)
discr = self.inner_mapper.discrwb.discr_from_dd(kdescr.governing_dd)
for name in kdescr.scalar_args():
v = kwargs[name]
if isinstance(v, (int, float)):
kwargs[name] = discr.real_dtype.type(v)
elif isinstance(v, complex):
kwargs[name] = discr.complex_dtype.type(v)
elif isinstance(v, np.number):
pass
else:
raise ValueError("unrecognized scalar type for variable '%s': %s"
% (name, type(v)))
kwargs["grdg_n"] = discr.nnodes
evt, result_dict = kdescr.loopy_kernel(self.queue, **kwargs)
for val in result_dict.values():
assert not isinstance(val, np.ndarray)
if profile_data is not None and isinstance(val, pyopencl.array.Array):
profile_data["bytes_written"] = (
profile_data.get("bytes_written", 0) + val.nbytes)
profile_data["bytes_written_by_scalar_assignments"] = (
profile_data.get("bytes_written_by_scalar_assignments", 0)
def map_insn_assign_to_discr_scoped(self, insn, profile_data=None):
assignments = []
for name, expr in zip(insn.names, insn.exprs):
logger.debug("assignment not profiled: %s <- %s", name, expr)
inner_mapper = self.inner_mapper
value = inner_mapper.rec(expr)
inner_mapper.discrwb._discr_scoped_subexpr_name_to_value[name] = value
assignments.append((name, value))
return assignments, []
def map_insn_assign_from_discr_scoped(self, insn, profile_data=None):
return [(
insn.name,
self.inner_mapper.
discrwb._discr_scoped_subexpr_name_to_value[insn.name])], []
def map_insn_rank_data_swap(self, insn, profile_data):
raise NotImplementedError("no profiling for instruction: %s" % insn)
def map_insn_diff_batch_assign(self, insn, profile_data):
assignments, futures = self.inner_mapper.map_insn_diff_batch_assign(insn)
if profile_data is not None:
# We model the cost to load the input and write the output. In
# particular, we assume the elementwise matrices are negligible in
# size and thus ignorable.
field = self.inner_mapper.rec(insn.field)
profile_data["bytes_read"] = (
profile_data.get("bytes_read", 0) + field.nbytes)
for _, value in assignments:
profile_data["bytes_written"] = (
# }}}
# }}}
# {{{ mem op counter check
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def test_assignment_memory_model(ctx_factory):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
_, discr = get_strong_wave_op_with_discr(cl_ctx, dims=2, order=3)
# Assignment instruction
bound_op = bind(
discr,
sym.Variable("input0", sym.DD_VOLUME)
+ sym.Variable("input1", sym.DD_VOLUME),
exec_mapper_factory=ExecutionMapperWithMemOpCounting)
input0 = discr.zeros(queue)
input1 = discr.zeros(queue)
result, profile_data = bound_op(
queue,
profile_data={},
input0=input0,
input1=input1)
assert profile_data["bytes_read"] == input0.nbytes + input1.nbytes
assert profile_data["bytes_written"] == result.nbytes
@pytest.mark.parametrize("use_fusion", (True, False))
def test_stepper_mem_ops(ctx_factory, use_fusion):
cl_ctx = ctx_factory()
op, discr = get_strong_wave_op_with_discr(cl_ctx, dims=dims, order=3)
t_start = 0
dt = 0.04
t_end = 0.2
from pytools.obj_array import join_fields
ic = join_fields(discr.zeros(queue),
[discr.zeros(queue) for i in range(discr.dim)])
stepper = RK4TimeStepper(
queue, discr, "w", bound_op, 1 + discr.dim,
get_strong_wave_component,
else:
stepper = FusedRK4TimeStepper(
queue, discr, "w", op.sym_operator(), 1 + discr.dim,
get_strong_wave_component,
step = 0
nsteps = int(np.ceil((t_end + 1e-9) / dt))
for (_, _, profile_data) in stepper.run(
ic, t_start, dt, t_end, return_profile_data=True):
step += 1
logger.info("bytes read: %d", profile_data["bytes_read"])
logger.info("bytes written: %d", profile_data["bytes_written"])
logger.info("bytes total: %d",
profile_data["bytes_read"] + profile_data["bytes_written"])
# }}}
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
SECONDS_PER_NANOSECOND = 10**9
class TimingFuture(object):
def __init__(self, start_event, stop_event):
self.start_event = start_event
self.stop_event = stop_event
def elapsed(self):
cl.wait_for_events([self.start_event, self.stop_event])
return (
self.stop_event.profile.end
- self.start_event.profile.end) / SECONDS_PER_NANOSECOND
from collections.abc import MutableSequence
class TimingFutureList(MutableSequence):
def __init__(self, *args, **kwargs):
self._list = list(*args, **kwargs)
def __len__(self):
return len(self._list)
def __getitem__(self, idx):
return self._list[idx]
def __setitem__(self, idx, val):
self._list[idx] = val
def __delitem__(self, idx):
del self._list[idx]
def insert(self, idx, val):
self._list.insert(idx, val)
def elapsed(self):
return sum(future.elapsed() for future in self._list)
def time_insn(f):
time_field_name = "time_%s" % f.__name__
def wrapper(self, insn, profile_data):
start = cl.enqueue_marker(self.queue)
retval = f(self, insn, profile_data)
end = cl.enqueue_marker(self.queue)
profile_data\
.setdefault(time_field_name, TimingFutureList())\
.append(TimingFuture(start, end))
class ExecutionMapperWithTiming(ExecutionMapperWrapper):
def map_profiled_call(self, expr, profile_data):
args = [self.inner_mapper.rec(p) for p in expr.parameters]
return self.inner_mapper.function_registry[expr.function.name](
self.queue, *args, profile_data=profile_data)
def map_profiled_operator_binding(self, expr, profile_data):
return self.inner_mapper.map_operator_binding(expr)
retval = self.inner_mapper.map_operator_binding(expr)
end = cl.enqueue_marker(self.queue)
time_field_name = "time_op_%s" % expr.op.mapper_method
profile_data\
.setdefault(time_field_name, TimingFutureList())\
.append(TimingFuture(start, end))
def map_insn_assign_to_discr_scoped(self, insn, profile_data):
return self.inner_mapper.map_insn_assign_to_discr_scoped(insn, profile_data)
def map_insn_assign_from_discr_scoped(self, insn, profile_data):
return self.\
inner_mapper.map_insn_assign_from_discr_scoped(insn, profile_data)
@time_insn
def map_insn_loopy_kernel(self, *args, **kwargs):
return self.inner_mapper.map_insn_loopy_kernel(*args, **kwargs)
def map_insn_assign(self, insn, profile_data):
if len(insn.exprs) == 1:
if isinstance(insn.exprs[0], p.Call):
assert insn.exprs[0].mapper_method == "map_call"
val = self.map_profiled_call(insn.exprs[0], profile_data)
return [(insn.names[0], val)], []
elif isinstance(insn.exprs[0], sym.OperatorBinding):
assert insn.exprs[0].mapper_method == "map_operator_binding"
val = self.map_profiled_operator_binding(insn.exprs[0], profile_data)
return [(insn.names[0], val)], []
return self.inner_mapper.map_insn_assign(insn, profile_data)
@time_insn
def map_insn_diff_batch_assign(self, insn, profile_data):
return self.inner_mapper.map_insn_diff_batch_assign(insn, profile_data)
# }}}
# {{{ timing check
@pytest.mark.parametrize("use_fusion", (True, False))
def test_stepper_timing(ctx_factory, use_fusion):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(
cl_ctx,
properties=cl.command_queue_properties.PROFILING_ENABLE)
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
op, discr = get_strong_wave_op_with_discr(cl_ctx, dims=dims, order=3)
t_start = 0
dt = 0.04
t_end = 0.1
from pytools.obj_array import join_fields
ic = join_fields(discr.zeros(queue),
[discr.zeros(queue) for i in range(discr.dim)])
if not use_fusion:
bound_op = bind(
discr, op.sym_operator(),
exec_mapper_factory=ExecutionMapperWithTiming)
stepper = RK4TimeStepper(
queue, discr, "w", bound_op, 1 + discr.dim,
get_strong_wave_component,
exec_mapper_factory=ExecutionMapperWithTiming)
else:
stepper = FusedRK4TimeStepper(
queue, discr, "w", op.sym_operator(), 1 + discr.dim,
get_strong_wave_component,
exec_mapper_factory=ExecutionMapperWithTiming)
step = 0
import time
t = time.time()
nsteps = int(np.ceil((t_end + 1e-9) / dt))
for (_, _, profile_data) in stepper.run(
ic, t_start, dt, t_end, return_profile_data=True):
step += 1
tn = time.time()
logger.info("step %d/%d: %f", step, nsteps, tn - t)
t = tn
logger.info("fusion? %s", use_fusion)
for key, value in profile_data.items():
if isinstance(value, TimingFutureList):
print(key, value.elapsed())
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
# {{{ paper outputs
def get_example_stepper(queue, dims=2, order=3, use_fusion=True,
exec_mapper_factory=ExecutionMapper,
return_ic=False):
op, discr = get_strong_wave_op_with_discr(queue.context, dims=dims, order=3)
if not use_fusion:
bound_op = bind(
discr, op.sym_operator(),
exec_mapper_factory=exec_mapper_factory)
stepper = RK4TimeStepper(
queue, discr, "w", bound_op, 1 + discr.dim,
get_strong_wave_component,
exec_mapper_factory=exec_mapper_factory)
else:
stepper = FusedRK4TimeStepper(
queue, discr, "w", op.sym_operator(), 1 + discr.dim,
get_strong_wave_component,
exec_mapper_factory=exec_mapper_factory)
if return_ic:
from pytools.obj_array import join_fields
ic = join_fields(discr.zeros(queue),
[discr.zeros(queue) for i in range(discr.dim)])
return stepper, ic
return stepper
def latex_table(table_format, header, rows):
result = []
_ = result.append
_(rf"\begin{{tabular}}{{{table_format}}}")
_(r"\toprule")
_(" & ".join(rf"\multicolumn{{1}}{{c}}{{{item}}}" for item in header) + r" \\")
_(r"\midrule")
for row in rows:
_(" & ".join(row) + r" \\")
_(r"\bottomrule")
_(r"\end{tabular}")
return "\n".join(result)
def ascii_table(table_format, header, rows):
from pytools import Table
table = Table()
table.add_row(header)
for input_row in rows:
row = []
for item in input_row:
if item.startswith(r"\num{"):
# Strip \num{...} formatting
row.append(item[5:-1])
else:
row.append(item)
table.add_row(row)
return str(table)
if PRINT_RESULTS_TO_STDOUT:
table = ascii_table
else:
table = latex_table
def problem_stats(order=3):
cl_ctx = cl.create_some_context()
_, dg_discr_2d = get_strong_wave_op_with_discr(cl_ctx, dims=2, order=order)
print("Number of 2D elements:", dg_discr_2d.mesh.nelements)
vol_discr_2d = dg_discr_2d.discr_from_dd("vol")
dofs_2d = {group.nunit_nodes for group in vol_discr_2d.groups}
from pytools import one
print("Number of DOFs per 2D element:", one(dofs_2d))
_, dg_discr_3d = get_strong_wave_op_with_discr(cl_ctx, dims=3, order=order)
print("Number of 3D elements:", dg_discr_3d.mesh.nelements)
vol_discr_3d = dg_discr_3d.discr_from_dd("vol")
dofs_3d = {group.nunit_nodes for group in vol_discr_3d.groups}
from pytools import one
print("Number of DOFs per 3D element:", one(dofs_3d))