Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import division, print_function
__copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import logging
import numpy as np
import pyopencl as cl
import dagrt.language as lang
import pymbolic.primitives as p
import grudge.symbolic.mappers as gmap
from pymbolic.mapper.evaluator import EvaluationMapper \
as PymbolicEvaluationMapper
from grudge import sym, bind, DGDiscretizationWithBoundaries
from leap.rk import LSRK4Method
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# {{{ topological sort
def topological_sort(stmts, root_deps):
id_to_stmt = {stmt.id: stmt for stmt in stmts}
ordered_stmts = []
satisfied = set()
def satisfy_dep(name):
if name in satisfied:
return
stmt = id_to_stmt[name]
for dep in stmt.depends_on:
satisfy_dep(dep)
ordered_stmts.append(stmt)
satisfied.add(name)
for d in root_deps:
satisfy_dep(d)
return ordered_stmts
# }}}
# Use evaluation, not identity mappers to propagate symbolic vectors to
# outermost level.
class DagrtToGrudgeRewriter(PymbolicEvaluationMapper):
def __init__(self, context):
self.context = context
def map_variable(self, expr):
return self.context[expr.name]
def map_call(self, expr):
raise ValueError("function call not expected")
class GrudgeArgSubstitutor(gmap.SymbolicEvaluator):
def __init__(self, args):
super().__init__(context={})
self.args = args
def map_grudge_variable(self, expr):
if expr.name in self.args:
return self.args[expr.name]
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def transcribe_phase(dag, field_var_name, field_components, phase_name,
sym_operator):
sym_operator = gmap.OperatorBinder()(sym_operator)
phase = dag.phases[phase_name]
ctx = {
"<t>": sym.var("input_t", sym.DD_SCALAR),
"<dt>": sym.var("input_dt", sym.DD_SCALAR),
f"<state>{field_var_name}": sym.make_sym_array(
f"input_{field_var_name}", field_components),
f"<p>residual": sym.make_sym_array(
"input_residual", field_components),
}
rhs_name = f"<func>{field_var_name}"
output_vars = [v for v in ctx]
yielded_states = []
from dagrt.codegen.transform import isolate_function_calls_in_phase
ordered_stmts = topological_sort(
isolate_function_calls_in_phase(
phase,
dag.get_stmt_id_generator(),
dag.get_var_name_generator()).statements,
phase.depends_on)
for stmt in ordered_stmts:
if stmt.condition is not True:
raise NotImplementedError(
"non-True condition (in statement '%s') not supported"
% stmt.id)
if isinstance(stmt, lang.Nop):
pass
elif isinstance(stmt, lang.AssignExpression):
if not isinstance(stmt.lhs, p.Variable):
raise NotImplementedError("lhs of statement %s is not a variable: %s"
% (stmt.id, stmt.lhs))
ctx[stmt.lhs.name] = sym.cse(
DagrtToGrudgeRewriter(ctx)(stmt.rhs),
(
stmt.lhs.name
.replace("<", "")
.replace(">", "")))
elif isinstance(stmt, lang.AssignFunctionCall):
if stmt.function_id != rhs_name:
raise NotImplementedError(
"statement '%s' calls unsupported function '%s'"
% (stmt.id, stmt.function_id))
if stmt.parameters:
raise NotImplementedError(
"statement '%s' calls function '%s' with positional arguments"
% (stmt.id, stmt.function_id))
kwargs = {name: sym.cse(DagrtToGrudgeRewriter(ctx)(arg))
for name, arg in stmt.kw_parameters.items()}
if len(stmt.assignees) != 1:
raise NotImplementedError(
"statement '%s' calls function '%s' "
"with more than one LHS"
% (stmt.id, stmt.function_id))
assignee, = stmt.assignees
ctx[assignee] = GrudgeArgSubstitutor(kwargs)(sym_operator)
elif isinstance(stmt, lang.YieldState):
d2g = DagrtToGrudgeRewriter(ctx)
yielded_states.append(
(stmt.time_id, d2g(stmt.time), stmt.component_id,
d2g(stmt.expression)))
else:
raise NotImplementedError("statement %s is of unsupported type ''%s'"
% (stmt.id, type(stmt).__name__))
return output_vars, [ctx[ov] for ov in output_vars], yielded_states
def get_strong_wave_op_with_discr(cl_ctx, dims=3, order=4):
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dims,
b=(0.5,)*dims,
n=(16,)*dims)
logger.info("%d elements" % mesh.nelements)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
source_center = np.array([0.1, 0.22, 0.33])[:dims]
source_width = 0.05
source_omega = 3
sym_x = sym.nodes(mesh.dim)
sym_source_center_dist = sym_x - source_center
sym_t = sym.ScalarVariable("t")
from grudge.models.wave import StrongWaveOperator
from meshmode.mesh import BTAG_ALL, BTAG_NONE
op = StrongWaveOperator(-0.1, dims,
source_f=(
sym.sin(source_omega*sym_t)
* sym.exp(
-np.dot(sym_source_center_dist, sym_source_center_dist)
/ source_width**2)),
dirichlet_tag=BTAG_NONE,
neumann_tag=BTAG_NONE,
radiation_tag=BTAG_ALL,
flux_type="upwind")
op.check_bc_coverage(mesh)
return (op, discr)
class RK4TimeStepperBase(object):
def get_initial_context(self, fields, t_start, dt):
from pytools.obj_array import join_fields
# Flatten fields.
flattened_fields = []
for field in fields:
if isinstance(field, list):
flattened_fields.extend(field)
else:
flattened_fields.append(field)
flattened_fields = join_fields(*flattened_fields)
del fields
return {
"input_t": t_start,
"input_dt": dt,
self.state_name: flattened_fields,
"input_residual": flattened_fields,
}
def set_up_stepper(self, discr, field_var_name, sym_rhs, num_fields):
dt_method = LSRK4Method(component_id=field_var_name)
dt_code = dt_method.generate()
self.field_var_name = field_var_name
self.state_name = f"input_{field_var_name}"
# Transcribe the phase.
output_vars, results, yielded_states = transcribe_phase(
dt_code, field_var_name, num_fields,
"primary", sym_rhs)
# Build the bound operator for the time integrator.
output_t = results[0]
output_dt = results[1]
output_states = results[2]
output_residuals = results[3]
assert len(output_states) == num_fields
assert len(output_states) == len(output_residuals)
from pytools.obj_array import join_fields
flattened_results = join_fields(output_t, output_dt, *output_states)
self.bound_op = bind(discr, flattened_results)
class RK4TimeStepper(RK4TimeStepperBase):
def __init__(self, queue, discr, field_var_name, grudge_bound_op,
num_fields, component_getter):
from pymbolic import var
# Construct sym_rhs to have the effect of replacing the RHS calls in the
# dagrt code with calls of the grudge operator.
from grudge.symbolic.primitives import ExternalCall, Variable
call = sym.cse(ExternalCall(
var("grudge_op"),
(
(Variable("t", dd=sym.DD_SCALAR),)
+ tuple(
Variable(field_var_name, dd=sym.DD_VOLUME)[i]
for i in range(num_fields))),
dd=sym.DD_VOLUME))
from pytools.obj_array import join_fields
sym_rhs = join_fields(*(call[i] for i in range(num_fields)))
self.queue = queue
self.grudge_bound_op = grudge_bound_op
self.set_up_stepper(discr, field_var_name, sym_rhs, num_fields)
self.component_getter = component_getter
def _bound_op(self, t, *args):
from pytools.obj_array import join_fields
context = {
"t": t,
self.field_var_name: join_fields(*args)}
return self.grudge_bound_op(self.queue, **context)
def get_initial_context(self, fields, t_start, dt):
context = super().get_initial_context(fields, t_start, dt)
context["grudge_op"] = self._bound_op
return context
def run(self, fields, t_start, dt, t_end):
context = self.get_initial_context(fields, t_start, dt)
t = t_start
while t <= t_end:
results = self.bound_op(self.queue, **context)
t = results[0]
context["input_t"] = t
context["input_dt"] = results[1]
output_states = results[2:]
context[self.state_name] = output_states
yield (t, self.component_getter(output_states))
class FusedRK4TimeStepper(RK4TimeStepperBase):
def __init__(self, queue, discr, field_var_name, sym_rhs, num_fields,
component_getter):
self.queue = queue
self.set_up_stepper(discr, field_var_name, sym_rhs, num_fields)
self.component_getter = component_getter
def run(self, fields, t_start, dt, t_end):
context = self.get_initial_context(fields, t_start, dt)
t = t_start
while t <= t_end:
results = self.bound_op(self.queue, **context)
t = results[0]
context["input_t"] = t
context["input_dt"] = results[1]
output_states = results[2:]
context[self.state_name] = output_states
yield (t, self.component_getter(output_states))
def get_strong_wave_component(state_component):
return (state_component[0], state_component[1:])
# {{{ equivalence check
def test_stepper_equivalence(order=4):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
dims = 2
op, discr = get_strong_wave_op_with_discr(cl_ctx, dims=dims, order=order)
if dims == 2:
dt = 0.04
elif dims == 3:
dt = 0.02
from pytools.obj_array import join_fields
ic = join_fields(discr.zeros(queue),
[discr.zeros(queue) for i in range(discr.dim)])
bound_op = bind(discr, op.sym_operator())
stepper = RK4TimeStepper(
queue, discr, "w", bound_op, 1 + discr.dim, get_strong_wave_component)
fused_stepper = FusedRK4TimeStepper(
queue, discr, "w", op.sym_operator(), 1 + discr.dim,
get_strong_wave_component)
t_start = 0
t_end = 0.5
nsteps = int(t_end/dt)
print("dt=%g nsteps=%d" % (dt, nsteps))
step = 0
norm = bind(discr, sym.norm(2, sym.var("u_ref") - sym.var("u")))
fused_steps = fused_stepper.run(ic, t_start, dt, t_end)
for t_ref, (u_ref, v_ref) in stepper.run(ic, t_start, dt, t_end):
step += 1
logger.info("step %d", step)
t, (u, v) = next(fused_steps)
assert t == t_ref, step
assert norm(queue, u=u, u_ref=u_ref) <= 1e-13, step
# }}}
if __name__ == "__main__":
test_stepper_equivalence()