Newer
Older
#!/usr/bin/env python3
"""A study of operator fusion for time integration operators in Grudge.
"""
from __future__ import division, print_function
__copyright__ = """
Copyright (C) 2015 Andreas Kloeckner
Copyright (C) 2019 Matt Wala
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import logging
import numpy as np
import pymbolic.primitives as p
import grudge.symbolic.mappers as gmap
from pymbolic.mapper.evaluator import EvaluationMapper \
as PymbolicEvaluationMapper
from grudge import sym, bind, DGDiscretizationWithBoundaries
from leap.rk import LSRK4Method
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# {{{ topological sort
def topological_sort(stmts, root_deps):
id_to_stmt = {stmt.id: stmt for stmt in stmts}
ordered_stmts = []
satisfied = set()
def satisfy_dep(name):
if name in satisfied:
return
stmt = id_to_stmt[name]
for dep in stmt.depends_on:
satisfy_dep(dep)
ordered_stmts.append(stmt)
satisfied.add(name)
for d in root_deps:
satisfy_dep(d)
return ordered_stmts
# }}}
# Use evaluation, not identity mappers to propagate symbolic vectors to
# outermost level.
class DagrtToGrudgeRewriter(PymbolicEvaluationMapper):
def __init__(self, context):
self.context = context
def map_variable(self, expr):
return self.context[expr.name]
def map_call(self, expr):
raise ValueError("function call not expected")
class GrudgeArgSubstitutor(gmap.SymbolicEvaluator):
def __init__(self, args):
super().__init__(context={})
self.args = args
def map_grudge_variable(self, expr):
if expr.name in self.args:
return self.args[expr.name]
def transcribe_phase(dag, field_var_name, field_components, phase_name,
sym_operator):
"""Arguments:
dag: The Dagrt code for the time integrator
field_var_name: The name of the simulation variable
field_components: The number of components (fields) in the variable
phase_name: The name of the phase to transcribe in the Dagrt code
sym_operator: The Grudge symbolic expression to substitue for the
right-hand side evaluation in the Dagrt code
"""
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
sym_operator = gmap.OperatorBinder()(sym_operator)
phase = dag.phases[phase_name]
ctx = {
"<t>": sym.var("input_t", sym.DD_SCALAR),
"<dt>": sym.var("input_dt", sym.DD_SCALAR),
f"<state>{field_var_name}": sym.make_sym_array(
f"input_{field_var_name}", field_components),
f"<p>residual": sym.make_sym_array(
"input_residual", field_components),
}
rhs_name = f"<func>{field_var_name}"
output_vars = [v for v in ctx]
yielded_states = []
from dagrt.codegen.transform import isolate_function_calls_in_phase
ordered_stmts = topological_sort(
isolate_function_calls_in_phase(
phase,
dag.get_stmt_id_generator(),
dag.get_var_name_generator()).statements,
phase.depends_on)
for stmt in ordered_stmts:
if stmt.condition is not True:
raise NotImplementedError(
"non-True condition (in statement '%s') not supported"
% stmt.id)
if isinstance(stmt, lang.Nop):
pass
elif isinstance(stmt, lang.AssignExpression):
if not isinstance(stmt.lhs, p.Variable):
raise NotImplementedError("lhs of statement %s is not a variable: %s"
% (stmt.id, stmt.lhs))
ctx[stmt.lhs.name] = sym.cse(
DagrtToGrudgeRewriter(ctx)(stmt.rhs),
(
stmt.lhs.name
.replace("<", "")
.replace(">", "")))
elif isinstance(stmt, lang.AssignFunctionCall):
if stmt.function_id != rhs_name:
raise NotImplementedError(
"statement '%s' calls unsupported function '%s'"
% (stmt.id, stmt.function_id))
if stmt.parameters:
raise NotImplementedError(
"statement '%s' calls function '%s' with positional arguments"
% (stmt.id, stmt.function_id))
kwargs = {name: sym.cse(DagrtToGrudgeRewriter(ctx)(arg))
for name, arg in stmt.kw_parameters.items()}
if len(stmt.assignees) != 1:
raise NotImplementedError(
"statement '%s' calls function '%s' "
"with more than one LHS"
% (stmt.id, stmt.function_id))
assignee, = stmt.assignees
ctx[assignee] = GrudgeArgSubstitutor(kwargs)(sym_operator)
elif isinstance(stmt, lang.YieldState):
d2g = DagrtToGrudgeRewriter(ctx)
yielded_states.append(
(stmt.time_id, d2g(stmt.time), stmt.component_id,
d2g(stmt.expression)))
else:
raise NotImplementedError("statement %s is of unsupported type ''%s'"
% (stmt.id, type(stmt).__name__))
return output_vars, [ctx[ov] for ov in output_vars], yielded_states
def __init__(self, queue, component_getter):
self.queue = queue
self.component_getter = component_getter
def get_initial_context(self, fields, t_start, dt):
from pytools.obj_array import join_fields
# Flatten fields.
flattened_fields = []
for field in fields:
if isinstance(field, list):
flattened_fields.extend(field)
else:
flattened_fields.append(field)
flattened_fields = join_fields(*flattened_fields)
del fields
return {
"input_t": t_start,
"input_dt": dt,
self.state_name: flattened_fields,
"input_residual": flattened_fields,
}
def set_up_stepper(self, discr, field_var_name, sym_rhs, num_fields,
exec_mapper_factory=ExecutionMapper):
dt_method = LSRK4Method(component_id=field_var_name)
dt_code = dt_method.generate()
self.field_var_name = field_var_name
self.state_name = f"input_{field_var_name}"
# Transcribe the phase.
output_vars, results, yielded_states = transcribe_phase(
dt_code, field_var_name, num_fields,
"primary", sym_rhs)
# Build the bound operator for the time integrator.
output_t = results[0]
output_dt = results[1]
output_states = results[2]
output_residuals = results[3]
assert len(output_states) == num_fields
assert len(output_states) == len(output_residuals)
from pytools.obj_array import join_fields
flattened_results = join_fields(output_t, output_dt, *output_states)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
self.bound_op = bind(
discr, flattened_results, exec_mapper_factory=exec_mapper_factory)
def run(self, fields, t_start, dt, t_end, return_profile_data=False):
context = self.get_initial_context(fields, t_start, dt)
t = t_start
while t <= t_end:
if return_profile_data:
profile_data = dict()
else:
profile_data = None
results = self.bound_op(
self.queue,
profile_data=profile_data,
**context)
if return_profile_data:
results = results[0]
t = results[0]
context["input_t"] = t
context["input_dt"] = results[1]
output_states = results[2:]
context[self.state_name] = output_states
result = (t, self.component_getter(output_states))
if return_profile_data:
result += (profile_data,)
yield result
class RK4TimeStepper(RK4TimeStepperBase):
def __init__(self, queue, discr, field_var_name, grudge_bound_op,
num_fields, component_getter, exec_mapper_factory=ExecutionMapper):
"""Arguments:
field_var_name: The name of the simulation variable
grudge_bound_op: The BoundExpression for the right-hand side
num_fields: The number of components in the simulation variable
component_getter: A function, which, given an object array
representing the simulation variable, splits the array into
its components
"""
from pymbolic import var
# Construct sym_rhs to have the effect of replacing the RHS calls in the
# dagrt code with calls of the grudge operator.
from grudge.symbolic.primitives import ExternalCall, Variable
call = sym.cse(ExternalCall(
var("grudge_op"),
(
(Variable("t", dd=sym.DD_SCALAR),)
+ tuple(
Variable(field_var_name, dd=sym.DD_VOLUME)[i]
for i in range(num_fields))),
dd=sym.DD_VOLUME))
from pytools.obj_array import join_fields
sym_rhs = join_fields(*(call[i] for i in range(num_fields)))
self.queue = queue
self.grudge_bound_op = grudge_bound_op
self.set_up_stepper(discr, field_var_name, sym_rhs, num_fields, exec_mapper_factory)
from pytools.obj_array import join_fields
context = {
"t": t,
self.field_var_name: join_fields(*args)}
result = self.grudge_bound_op(
self.queue, profile_data=profile_data, **context)
if profile_data is not None:
result = result[0]
return result
def get_initial_context(self, fields, t_start, dt):
context = super().get_initial_context(fields, t_start, dt)
context["grudge_op"] = self._bound_op
return context
class FusedRK4TimeStepper(RK4TimeStepperBase):
def __init__(self, queue, discr, field_var_name, sym_rhs, num_fields,
component_getter, exec_mapper_factory=ExecutionMapper):
self.set_up_stepper(
discr, field_var_name, sym_rhs, num_fields, exec_mapper_factory)
def get_strong_wave_op_with_discr(cl_ctx, dims=2, order=4):
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dims,
b=(0.5,)*dims,
n=(16,)*dims)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
source_center = np.array([0.1, 0.22, 0.33])[:dims]
source_width = 0.05
source_omega = 3
sym_x = sym.nodes(mesh.dim)
sym_source_center_dist = sym_x - source_center
sym_t = sym.ScalarVariable("t")
from grudge.models.wave import StrongWaveOperator
from meshmode.mesh import BTAG_ALL, BTAG_NONE
op = StrongWaveOperator(-0.1, dims,
source_f=(
sym.sin(source_omega*sym_t)
* sym.exp(
-np.dot(sym_source_center_dist, sym_source_center_dist)
/ source_width**2)),
dirichlet_tag=BTAG_NONE,
neumann_tag=BTAG_NONE,
radiation_tag=BTAG_ALL,
flux_type="upwind")
op.check_bc_coverage(mesh)
return (op, discr)
def get_strong_wave_component(state_component):
return (state_component[0], state_component[1:])
# {{{ equivalence check between fused and non-fused versions
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def test_stepper_equivalence(order=4):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
dims = 2
op, discr = get_strong_wave_op_with_discr(cl_ctx, dims=dims, order=order)
if dims == 2:
dt = 0.04
elif dims == 3:
dt = 0.02
from pytools.obj_array import join_fields
ic = join_fields(discr.zeros(queue),
[discr.zeros(queue) for i in range(discr.dim)])
bound_op = bind(discr, op.sym_operator())
stepper = RK4TimeStepper(
queue, discr, "w", bound_op, 1 + discr.dim, get_strong_wave_component)
fused_stepper = FusedRK4TimeStepper(
queue, discr, "w", op.sym_operator(), 1 + discr.dim,
get_strong_wave_component)
t_start = 0
t_end = 0.5
print("dt=%g nsteps=%d" % (dt, nsteps))
step = 0
norm = bind(discr, sym.norm(2, sym.var("u_ref") - sym.var("u")))
fused_steps = fused_stepper.run(ic, t_start, dt, t_end)
for t_ref, (u_ref, v_ref) in stepper.run(ic, t_start, dt, t_end):
step += 1
t, (u, v) = next(fused_steps)
assert t == t_ref, step
assert norm(queue, u=u, u_ref=u_ref) <= 1e-13, step
# }}}
# {{{ mem op counter implementation
class MemOpCountingExecutionMapper(ExecutionMapper):
# This is a skeleton implementation that only has just enough functionality
# for the wave-min example to work.
def __init__(self, queue, context, bound_op):
super().__init__(queue, context, bound_op)
def map_external_call(self, expr):
# Should have been caught by our op counter
assert False, ("map_external_call called: %s" % expr)
def map_profiled_external_call(self, expr, profile_data):
from pymbolic.primitives import Variable
assert isinstance(expr.function, Variable)
args = [self.rec(p) for p in expr.parameters]
return self.context[expr.function.name](*args, profile_data=profile_data)
def map_profiled_essentially_elementwise_linear(self, op, field_expr, profile_data):
result = getattr(self, op.mapper_method)(op, field_expr)
if profile_data is not None:
# We model the cost to load the input and write the output. In
# particular, we assume the elementwise matrices are negligible in
# size and thus ignorable.
field = self.rec(field_expr)
profile_data["bytes_read"] = (
profile_data.get("bytes_read", 0) + field.nbytes)
profile_data["bytes_written"] = (
profile_data.get("bytes_written", 0) + result.nbytes)
return result
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def process_assignment_expr(self, expr, profile_data):
if isinstance(expr, sym.ExternalCall):
assert expr.mapper_method == "map_external_call"
val = self.map_profiled_external_call(expr, profile_data)
elif isinstance(expr, sym.OperatorBinding):
if isinstance(
expr.op,
(
# TODO: Not comprehensive.
op.InterpolationOperator,
op.RefFaceMassOperator,
op.RefInverseMassOperator,
op.OppositeInteriorFaceSwap)):
val = self.map_profiled_essentially_elementwise_linear(
expr.op, expr.field, profile_data)
else:
assert False, ("unknown operator: %s" % expr.op)
else:
logger.debug("assignment not profiled: %s", expr)
val = self.rec(expr)
return val
def map_insn_assign(self, insn, profile_data):
result = []
for name, expr in zip(insn.names, insn.exprs):
result.append((name, self.process_assignment_expr(expr, profile_data)))
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
return result, []
def map_insn_loopy_kernel(self, insn, profile_data):
kwargs = {}
kdescr = insn.kernel_descriptor
for name, expr in six.iteritems(kdescr.input_mappings):
val = self.rec(expr)
kwargs[name] = val
assert not isinstance(val, np.ndarray)
if profile_data is not None and isinstance(val, pyopencl.array.Array):
profile_data["bytes_read"] = (
profile_data.get("bytes_read", 0) + val.nbytes)
discr = self.discrwb.discr_from_dd(kdescr.governing_dd)
for name in kdescr.scalar_args():
v = kwargs[name]
if isinstance(v, (int, float)):
kwargs[name] = discr.real_dtype.type(v)
elif isinstance(v, complex):
kwargs[name] = discr.complex_dtype.type(v)
elif isinstance(v, np.number):
pass
else:
raise ValueError("unrecognized scalar type for variable '%s': %s"
% (name, type(v)))
kwargs["grdg_n"] = discr.nnodes
evt, result_dict = kdescr.loopy_kernel(self.queue, **kwargs)
for val in result_dict.values():
assert not isinstance(val, np.ndarray)
if profile_data is not None and isinstance(val, pyopencl.array.Array):
profile_data["bytes_written"] = (
profile_data.get("bytes_written", 0) + val.nbytes)
return list(result_dict.items()), []
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
def map_insn_assign_to_discr_scoped(self, insn, profile_data=None):
assignments = []
for name, expr in zip(insn.names, insn.exprs):
logger.debug("assignment not profiled: %s <- %s", name, expr)
value = self.rec(expr)
self.discrwb._discr_scoped_subexpr_name_to_value[name] = value
assignments.append((name, value))
return assignments, []
def map_insn_assign_from_discr_scoped(self, insn, profile_data=None):
return [(insn.name,
self.discrwb._discr_scoped_subexpr_name_to_value[insn.name])], []
def map_insn_rank_data_swap(self, insn, profile_data):
raise NotImplementedError("no profiling for instruction: %s" % insn)
def map_insn_diff_batch_assign(self, insn, profile_data):
assignments, futures = super().map_insn_diff_batch_assign(insn)
if profile_data is not None:
# We model the cost to load the input and write the output. In
# particular, we assume the elementwise matrices are negligible in
# size and thus ignorable.
field = self.rec(insn.field)
profile_data["bytes_read"] = (
profile_data.get("bytes_read", 0) + field.nbytes)
for _, value in assignments:
profile_data["bytes_written"] = (
profile_data.get("bytes_writte", 0) + value.nbytes)
return assignments, futures
# }}}
# }}}
# {{{ mem op counter check
@pytest.mark.parametrize("use_fusion", (True, False))
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
dims = 2
op, discr = get_strong_wave_op_with_discr(cl_ctx, dims=2, order=3)
t_start = 0
dt = 0.04
t_end = 0.2
from pytools.obj_array import join_fields
ic = join_fields(discr.zeros(queue),
[discr.zeros(queue) for i in range(discr.dim)])
bound_op = bind(
discr, op.sym_operator(),
exec_mapper_factory=MemOpCountingExecutionMapper)
stepper = RK4TimeStepper(
queue, discr, "w", bound_op, 1 + discr.dim,
get_strong_wave_component,
exec_mapper_factory=MemOpCountingExecutionMapper)
else:
stepper = FusedRK4TimeStepper(
queue, discr, "w", op.sym_operator(), 1 + discr.dim,
get_strong_wave_component,
exec_mapper_factory=MemOpCountingExecutionMapper)
step = 0
norm = bind(discr, sym.norm(2, sym.var("u_ref") - sym.var("u")))
nsteps = int(np.ceil((t_end + 1e-9) / dt))
for (_, _, profile_data) in stepper.run(
ic, t_start, dt, t_end, return_profile_data=True):
step += 1
logger.info("bytes read: %d", profile_data["bytes_read"])
logger.info("bytes written: %d", profile_data["bytes_written"])
#test_stepper_equivalence()
test_stepper_mem_ops()