Newer
Older
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
logger = logging.getLogger(__name__)
# {{{ bounding box test
def test_bounding_box(ctx_getter):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree.tools import AXIS_NAMES
from boxtree.bounding_box import BoundingBoxFinder
bbf = BoundingBoxFinder(ctx)
#for dtype in [np.float32, np.float64]:
for dtype in [np.float64, np.float32]:
for dims in [2, 3]:
axis_names = AXIS_NAMES[:dims]
for nparticles in [9, 4096, 10**5]:
logger.info("%s - %s %s" % (dtype, dims, nparticles))
particles = make_particle_array(queue, nparticles, dims, dtype)
bbox_min = [np.min(x.get()) for x in particles]
bbox_max = [np.max(x.get()) for x in particles]
Andreas Klöckner
committed
bbox_cl = bbf(particles, radii=None).get()
bbox_min_cl = np.empty(dims, dtype)
bbox_max_cl = np.empty(dims, dtype)
for i, ax in enumerate(axis_names):
bbox_min_cl[i] = bbox_cl["min_"+ax]
bbox_max_cl[i] = bbox_cl["max_"+ax]
assert (bbox_min == bbox_min_cl).all()
assert (bbox_max == bbox_max_cl).all()
# }}}
# {{{ test basic tree build
def run_build_test(builder, queue, dims, dtype, nparticles, do_plot, max_particles_in_box=30, **kwargs):
if dtype == np.float32:
tol = 1e-4
elif dtype == np.float64:
tol = 1e-12
else:
raise RuntimeError("unsupported dtype: %s" % dtype)
logger.info(75*"-")
logger.info("%dD %s - %d particles - max %d per box - %s" % (
dims, dtype.type.__name__, nparticles, max_particles_in_box,
" - ".join("%s: %s" % (k, v) for k, v in kwargs.iteritems())))
logger.info(75*"-")
particles = make_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
tree = builder(queue, particles,
max_particles_in_box=max_particles_in_box, debug=True,
sorted_particles = np.array(list(tree.sources))
unsorted_particles = np.array([pi.get() for pi in particles])
assert (sorted_particles
== unsorted_particles[:, tree.user_source_ids]).all()
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
from boxtree import box_flags_enum as bfe
scaled_tol = tol*tree.root_extent
# Empty boxes exist in non-pruned trees--which themselves are undocumented.
# These boxes will fail these tests.
if not (tree.box_flags[ibox] & bfe.HAS_OWN_SRCNTGTS):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), (
ibox, extent_low, tree.bounding_box[0])
assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), (
ibox, extent_high, tree.bounding_box[1])
start = tree.box_source_starts[ibox]
box_particles = sorted_particles[:,start:start+tree.box_source_counts[ibox]]
good = (
(box_particles < extent_high[:, np.newaxis] + scaled_tol)
(extent_low[:, np.newaxis] - scaled_tol <= box_particles)
all_good_here = good.all()
if do_plot and not all_good_here and all_good_so_far:
pt.plot(
box_particles[0, np.where(~good)[1]],
box_particles[1, np.where(~good)[1]], "ro")
plotter.draw_box(ibox, edgecolor="red")
if not all_good_here:
print "BAD BOX", ibox
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
@pytools.test.mark_test.opencl
def test_particle_tree(ctx_getter, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
builder = TreeBuilder(ctx)
np.float64,
np.float32,
]:
for dims in [2, 3]:
# test single-box corner case
run_build_test(builder, queue, dims,
dtype, 4, do_plot=False)
# test bi-level corner case
run_build_test(builder, queue, dims,
dtype, 50, do_plot=False)
# test unpruned tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, skip_prune=True)
# exercise reallocation code
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, nboxes_guess=5)
# test many empty leaves corner case
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=False, max_particles_in_box=5)
# test vanilla tree build
run_build_test(builder, queue, dims, dtype, 10**5,
do_plot=do_plot)
Andreas Klöckner
committed
@pytools.test.mark_test.opencl
def test_source_target_tree(ctx_getter, do_plot=False):
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [2, 3]:
nsources = 2 * 10**5
ntargets = 3 * 10**5
dtype = np.float64
sources = make_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_particle_array(queue, ntargets, dims, dtype,
seed=19)
if do_plot:
import matplotlib.pyplot as pt
Andreas Klöckner
committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
pt.plot(sources[0].get(), sources[1].get(), "rx")
pt.plot(targets[0].get(), targets[1].get(), "g+")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree = tb(queue, sources, targets=targets,
max_particles_in_box=10, debug=True).get()
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
all_good_so_far = True
if do_plot:
from boxtree.visualization import TreePlotter
Andreas Klöckner
committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
for ibox in xrange(tree.nboxes):
extent_low, extent_high = tree.get_box_extent(ibox)
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
src_start = tree.box_source_starts[ibox]
tgt_start = tree.box_target_starts[ibox]
for what, particles in [
("sources", sorted_sources[:,src_start:src_start+tree.box_source_counts[ibox]]),
("targets", sorted_targets[:,tgt_start:tgt_start+tree.box_target_counts[ibox]]),
]:
good = (
(particles < extent_high[:, np.newaxis])
&
(extent_low[:, np.newaxis] <= particles)
).all(axis=0)
all_good_here = good.all()
if do_plot and not all_good_here:
pt.plot(
particles[0, np.where(~good)[0]],
particles[1, np.where(~good)[0]], "ro")
plotter.draw_box(ibox, edgecolor="red")
pt.show()
if not all_good_here:
print "BAD BOX %s %d" % (what, ibox)
all_good_so_far = all_good_so_far and all_good_here
if do_plot:
pt.gca().set_aspect("equal", "datalim")
pt.show()
assert all_good_so_far
Andreas Klöckner
committed
# {{{ test sources/targets-with-extent tree
@pytools.test.mark_test.opencl
Andreas Klöckner
committed
def test_extent_tree(ctx_getter, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims in [
2,
3
]:
nsources = 100000
ntargets = 200000
dtype = np.float64
npoint_sources_per_source = 16
sources = make_particle_array(queue, nsources, dims, dtype,
seed=12)
targets = make_particle_array(queue, ntargets, dims, dtype,
seed=19)
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=13)
source_radii = 2**rng.uniform(queue, nsources, dtype=dtype,
a=-10, b=0)
Andreas Klöckner
committed
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype,
a=-10, b=0)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
Andreas Klöckner
committed
dev_tree = tb(queue, sources, targets=targets,
source_radii=source_radii, target_radii=target_radii,
max_particles_in_box=10, debug=True)
logger.info("transfer tree, check orderings")
tree = dev_tree.get()
sorted_sources = np.array(list(tree.sources))
sorted_targets = np.array(list(tree.targets))
Andreas Klöckner
committed
sorted_source_radii = tree.source_radii
sorted_target_radii = tree.target_radii
unsorted_sources = np.array([pi.get() for pi in sources])
unsorted_targets = np.array([pi.get() for pi in targets])
Andreas Klöckner
committed
unsorted_source_radii = source_radii.get()
unsorted_target_radii = target_radii.get()
assert (sorted_sources
== unsorted_sources[:, tree.user_source_ids]).all()
Andreas Klöckner
committed
assert (sorted_source_radii
== unsorted_source_radii[tree.user_source_ids]).all()
# {{{ test box structure, stick-out criterion
logger.info("test box structure, stick-out criterion")
user_target_ids = np.empty(tree.ntargets, dtype=np.intp)
user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp)
if ntargets:
assert (sorted_targets
== unsorted_targets[:, user_target_ids]).all()
Andreas Klöckner
committed
assert (sorted_target_radii
== unsorted_target_radii[user_target_ids]).all()
all_good_so_far = True
for ibox in xrange(tree.nboxes):
extent_low, extent_high = tree.get_box_extent(ibox)
box_radius = np.max(extent_high-extent_low) * 0.5
stick_out_dist = tree.stick_out_factor * box_radius
assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox
assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox
Andreas Klöckner
committed
for what, starts, counts, points, radii in [
("source", tree.box_source_starts, tree.box_source_counts,
sorted_sources, sorted_source_radii),
("target", tree.box_target_starts, tree.box_target_counts,
sorted_targets, sorted_target_radii),
]:
bstart = starts[ibox]
bslice = slice(bstart, bstart+counts[ibox])
check_particles = points[:, bslice]
check_radii = radii[bslice]
Andreas Klöckner
committed
good = (
(check_particles + check_radii
< extent_high[:, np.newaxis] + stick_out_dist)
&
(extent_low[:, np.newaxis] - stick_out_dist
<= check_particles - check_radii)
).all(axis=0)
Andreas Klöckner
committed
all_good_here = good.all()
Andreas Klöckner
committed
if not all_good_here:
print "BAD BOX %s %d level %d" % (what, ibox, tree.box_levels[ibox])
Andreas Klöckner
committed
all_good_so_far = all_good_so_far and all_good_here
assert all_good_here
assert all_good_so_far
# }}}
# {{{ create, link point sources
logger.info("creating point sources")
np.random.seed(20)
from pytools.obj_array import make_obj_array
point_sources = make_obj_array([
cl.array.to_device(queue,
unsorted_sources[i][:, np.newaxis]
Andreas Klöckner
committed
+ unsorted_source_radii[:, np.newaxis]
* np.random.uniform(
-1, 1, size=(nsources, npoint_sources_per_source))
)
for i in range(dims)])
point_source_starts = cl.array.arange(queue,
0, (nsources+1)*npoint_sources_per_source, npoint_sources_per_source,
dtype=tree.particle_id_dtype)
dev_tree = dev_tree.link_point_sources(queue,
point_source_starts, point_sources,
debug=True)
# }}}
# }}}
# {{{ geometry query test
def test_geometry_query(ctx_getter, do_plot=False):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dims = 2
nparticles = 10**5
dtype = np.float64
particles = make_particle_array(queue, nparticles, dims, dtype)
if do_plot:
import matplotlib.pyplot as pt
pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
nballs = 10**4
ball_centers = make_particle_array(queue, nballs, dims, dtype)
ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1)
from boxtree.geo_lookup import LeavesToBallsLookupBuilder
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
lblb = LeavesToBallsLookupBuilder(ctx)
lbl = lblb(queue, tree, ball_centers, ball_radii)
# get data to host for test
tree = tree.get()
lbl = lbl.get()
ball_centers = np.array([x.get() for x in ball_centers]).T
ball_radii = ball_radii.get()
from boxtree import box_flags_enum
for ibox in xrange(tree.nboxes):
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
box_center = tree.box_centers[:, ibox]
ext_l, ext_h = tree.get_box_extent(ibox)
box_rad = 0.5*(ext_h-ext_l)[0]
linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1)
near_circles, = np.where(linf_circle_dists - ball_radii < box_rad)
start, end = lbl.balls_near_box_starts[ibox:ibox+2]
#print sorted(lbl.balls_near_box_lists[start:end])
#print sorted(near_circles)
assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles)
# }}}
# You can test individual routines by typing
# $ python test_tree.py 'test_routine(cl.create_some_context)'