Newer
Older
# timing function -------------------------------------------------------------
def time():
"""Return elapsed CPU time, as a float, in seconds."""
time_opt = os.environ.get("PYTOOLS_LOG_TIME") or "wall"
if time_opt == "wall":
from time import time
return time()
elif time_opt == "rusage":
from resource import getrusage, RUSAGE_SELF
return getrusage(RUSAGE_SELF).ru_utime
else:
raise RuntimeError, "invalid timing method '%s'" % time_opt
# abstract logging interface --------------------------------------------------
def __init__(self, name, unit=None, description=None):
self.name = name
self.unit = unit
self.description = description
@property
def default_aggregator(self): return None
"""Return the current value of the diagnostic represented by this
L{LogQuantity}."""
class MultiLogQuantity(object):
"""A source of multiple loggable scalars."""
def __init__(self, names, units=None, descriptions=None):
self.names = names
self.units = units
self.descriptions = descriptions
@property
def default_aggregators(self): return [None] * len(self.names)
def __call__(self):
"""Return an iterable of the current values of the diagnostic represented
by this L{MultiLogQuantity}."""
raise NotImplementedError
class DtConsumer(object):
def __init__(self, dt):
self.dt = dt
def set_dt(self, dt):
self.dt = dt
class SimulationLogQuantity(LogQuantity, DtConsumer):
"""A source of loggable scalars that needs to know the simulation timestep."""
def __init__(self, dt, name, unit=None, description=None):
LogQuantity.__init__(self, name, unit, description)
DtConsumer.__init__(self, dt)
class CallableLogQuantityAdapter(LogQuantity):
"""Adapt a 0-ary callable as a L{LogQuantity}."""
def __init__(self, callable, name, unit=None, description=None):
self.callable = callable
LogQuantity.__init__(self, name, unit, description)
def __call__(self):
return self.callable()
# manager functionality -------------------------------------------------------
class _GatherDescriptor(object):
def __init__(self, quantity, interval):
self.quantity = quantity
self.interval = interval
def __init__(self, unit, description, default_aggregator):
self.unit = unit
self.description = description
self.default_aggregator = default_aggregator
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def _join_by_first_of_tuple(list_of_iterables):
loi = [i.__iter__() for i in list_of_iterables]
if not loi:
return
key_vals = [iter.next() for iter in loi]
keys = [kv[0] for kv in key_vals]
values = [kv[1] for kv in key_vals]
target_key = max(keys)
force_advance = False
i = 0
while True:
while keys[i] < target_key or force_advance:
try:
new_key, new_value = loi[i].next()
except StopIteration:
return
assert keys[i] < new_key
keys[i] = new_key
values[i] = new_value
if new_key > target_key:
target_key = new_key
force_advance = False
i += 1
if i >= len(loi):
i = 0
if min(keys) == target_key:
yield target_key, values[:]
force_advance = True
"""A parallel-capable diagnostic time-series logging facility.
A C{LogManager} logs any number of named time series of floats to
a file. Non-time-series data, in the form of constants, is also
supported and saved.
If MPI parallelism is used, the "head rank" below always refers to
rank 0.
A command line tool called C{logtool} is available for looking at the
data in a saved log.
"""
def __init__(self, filename, mpi_comm=None):
"""Initialize this log manager instance.
@arg filename: If given, the filename to which this log is bound.
If this database exists, the current state is loaded from it.
@arg mpi_comm: A C{boost.mpi} communicator. If given, logs are periodically
synchronized to the head node, which then writes them out to disk.
"""
self.quantity_data = {}
self.quantity_table = {}
Andreas Klöckner
committed
Andreas Klöckner
committed
self.start_time = time()
Andreas Klöckner
committed
# parallel support
self.head_rank = 0
self.mpi_comm = mpi_comm
self.is_parallel = mpi_comm is not None
if mpi_comm is None:
self.rank = 0
else:
self.rank = mpi_comm.rank
self.head_rank = 0
self.next_sync_tick = 10
# watch stuff
self.watches = []
self.next_watch_tick = 1
# database binding
import sqlite3
if filename is not None:
self.db_conn = sqlite3.connect(filename, timeout=30)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
try:
self.db_conn.execute("select * from quantities;")
self._load()
except sqlite3.OperationalError:
# initialize new database
self.db_conn.execute("""
create table quantities (
name text,
unit text,
description text,
default_aggregator blob)""")
self.db_conn.execute("""
create table constants (
name text,
value blob)""")
self.set_constant("is_parallel", self.is_parallel)
else:
self.db_conn = None
def _load(self):
if self.mpi_comm and self.mpi_comm.rank != self.head_rank:
return
from pickle import loads
for name, value in self.db_conn.execute("select name, value from constants"):
self.constants[name] = loads(value)
self.is_parallel = self.constants["is_parallel"]
for name, unit, description, def_agg in self.db_conn.execute(
"select name, unit, description, default_aggregator from quantities"):
qdat = self.quantity_data[name] = _QuantityData(
unit, description, loads(def_agg))
def get_table(self, q_name):
if q_name not in self.quantity_data:
raise KeyError, "invalid quantity name '%s'" % q_name
try:
return self.quantity_table[q_name]
except KeyError:
from pytools.datatable import DataTable
result = self.quantity_table[q_name] = DataTable(["step", "rank", "value"])
if self.db_conn is not None:
for row in self.db_conn.execute(
"select step, rank, value from %s" % q_name):
result.insert_row(row)
return result
def add_watches(self, watches):
"""Add quantities that are printed after every time step."""
from pytools import Record
for watch in watches:
parsed = self._parse_expr(watch)
parsed, dep_data = self._get_expr_dep_data(parsed)
from pymbolic import compile
compiled = compile(parsed, [dd.varname for dd in dep_data])
watch_info = Record(expr=watch, parsed=parsed, dep_data=dep_data,
compiled=compiled)
self.watches.append(watch_info)
def set_constant(self, name, value):
"""Make a named, constant value available in the log."""
existed = name in self.constants
if self.db_conn is not None:
from pickle import dumps
value = buffer(dumps(value))
if existed:
self.db_conn.execute("update constants set value = ? where name = ?",
(value, name))
else:
self.db_conn.execute("insert into constants values (?,?)",
(name, value))
self.db_conn.commit()
"""Record data points from each added L{LogQuantity}.
May also checkpoint data to disk, and/or synchronize data points
to the head rank.
"""
start_time = time()
def insert_datapoint(name, value):
self.get_table(name).insert_row(
(self.tick_count, self.rank, value))
if self.db_conn is not None:
self.db_conn.execute("insert into %s values (?,?,?)" % name,
(self.tick_count, self.rank, value))
for gd in self.gather_descriptors:
if self.tick_count % gd.interval == 0:
q_value = gd.quantity()
if isinstance(gd.quantity, MultiLogQuantity):
for name, value in zip(gd.quantity.names, q_value):
insert_datapoint(name, value)
insert_datapoint(gd.quantity.name, q_value)
end_time = time()
# print watches
if self.tick_count == self.next_watch_tick:
self._watch_tick()
if self.tick_count == self.next_sync_tick:
# sync every few seconds:
# figure out next sync tick, broadcast to peers
ticks_per_10_sec = 10*self.tick_count/max(1, end_time-self.start_time)
self.next_sync_tick = self.tick_count + int(max(50, ticks_per_10_sec))
if self.mpi_comm is not None:
from boost.mpi import broadcast
self.next_sync_tick = broadcast(self.mpi_comm, self.next_sync_tick, self.head_rank)
self.t_log = time() - start_time
def save(self):
self.synchronize_logs()
if self.db_conn is not None:
# then, to disk
self.db_conn.commit()
def synchronize_logs(self):
"""Transfer data from client ranks to the head rank.
Must be called on all ranks simultaneously."""
if self.mpi_comm is None:
return
from boost.mpi import gather
if self.mpi_comm.rank == self.head_rank:
for rank_data in gather(self.mpi_comm, None, self.head_rank)[1:]:
for name, rows in rank_data:
self.get_table(name).insert_rows(rows)
if self.db_conn is not None:
for row in rows:
self.db_conn.execute("insert into ? values (?,?,?)",
(name,) + row)
else:
# send non-head data away
gather(self.mpi_comm,
[(name, self.get_table(name).data)
for name, qdat in self.quantity_data.iteritems()],
self.head_rank)
# and erase it
for qname in self.quantity_data.iterkeys():
self.get_table(qname).clear()
Andreas Klöckner
committed
def add_quantity(self, quantity, interval=1):
"""Add an object derived from L{LogQuantity} to this manager."""
def add_internal(name, unit, description, def_agg):
if name in self.quantity_data:
raise RuntimeError("cannot add the same quantity '%s' twice" % name)
self.quantity_data[name] = _QuantityData(
unit, description, def_agg)
if self.db_conn is not None:
from pickle import dumps
self.db_conn.execute("""insert into quantities values (?,?,?,?)""", (
name, unit, description,
buffer(dumps(def_agg))))
self.db_conn.execute("""create table %s
(step integer, rank integer, value real)""" % name)
self.db_conn.commit()
self.gather_descriptors.append(_GatherDescriptor(quantity, interval))
if isinstance(quantity, MultiLogQuantity):
for name, unit, description, def_agg in zip(
quantity.names,
quantity.units,
quantity.descriptions,
quantity.default_aggregators):
add_internal(name, unit, description, def_agg)
add_internal(quantity.name,
quantity.unit, quantity.description,
quantity.default_aggregator)
def get_expr_dataset(self, expression, description=None, unit=None):
"""Prepare a time-series dataset for a given expression.
@arg expression: A C{pymbolic} expression that may involve
the time-series variables and the constants in this L{LogManager}.
If there is data from multiple ranks for a quantity occuring in
this expression, an aggregator may have to be specified.
@return: C{(description, unit, table)}, where C{table}
is a list of tuples C{(tick_nbr, value)}.
Aggregators are specified as follows:
- C{qty.min}, C{qty.max}, C{qty.avg}, C{qty.sum}, C{qty.norm2}
- C{qty[rank_nbr]
parsed = self._parse_expr(expression)
parsed, dep_data = self._get_expr_dep_data(parsed)
# aggregate table data
for dd in dep_data:
table = self.get_table(dd.name)
table.sort(["step"])
dd.table = table.aggregated(["step"], "value", dd.agg_func).data
# evaluate unit and description, if necessary
if unit is None:
from pymbolic import substitute, parse
unit = substitute(parsed,
dict((dd.varname, parse(dd.qdat.unit)) for dd in dep_data)
)
if description is None:
description = expression
# compile and evaluate
from pymbolic import compile
compiled = compile(parsed, [dd.varname for dd in dep_data])
return (description,
unit,
[(key, compiled(*values))
for key, values in _join_by_first_of_tuple(
dd.table for dd in dep_data)
])
def get_joint_dataset(self, expressions):
"""Return a joint data set for a list of expressions.
@arg expressions: a list of either strings representing
expressions directly, or triples (descr, unit, expr).
In the former case, the description and the unit are
found automatically, if possible. In the latter case,
they are used as specified.
@return: A triple C{(descriptions, units, table)}, where
C{table} is a a list of C{[(tstep, (val_expr1, val_expr2,...)...]}.
# dubs is a list of (desc, unit, table) triples as
# returned by get_expr_dataset
dubs = []
for expr in expressions:
if isinstance(expr, str):
dub = self.get_expr_dataset(expr)
else:
expr_descr, expr_unit, expr_str = expr
dub = get_expr_dataset(
expr_str,
description=expr_descr,
unit=expr_unit)
dubs.append(dub)
zipped_dubs = list(zip(*dubs))
zipped_dubs[2] = list(
_join_by_first_of_tuple(zipped_dubs[2]))
return zipped_dubs
def get_plot_data(self, expr_x, expr_y, min_step=None, max_step=None):
"""Generate plot-ready data.
@return: C{(data_x, descr_x, unit_x), (data_y, descr_y, unit_y)}
"""
(descr_x, descr_y), (unit_x, unit_y), data = \
self.get_joint_dataset([expr_x, expr_y])
if min_step is not None:
data = [(step, tup) for step, tup in data if min_step <= step]
if max_step is not None:
data = [(step, tup) for step, tup in data if step <= max_step]
stepless_data = [tup for step, tup in data]
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
data_x, data_y = zip(*stepless_data)
return (data_x, descr_x, unit_x), \
(data_y, descr_y, unit_y)
def plot_gnuplot(self, gp, expr_x, expr_y, **kwargs):
"""Plot data to Gnuplot.py.
@arg gp: a Gnuplot.Gnuplot instance to which the plot is sent.
@arg expr_x: an allowed argument to L{get_joint_dataset}.
@arg expr_y: an allowed argument to L{get_joint_dataset}.
@arg kwargs: keyword arguments that are directly passed on to
C{Gnuplot.Data}.
"""
(data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \
self.get_plot_data(expr_x, expr_y)
gp.xlabel("%s [%s]" % (descr_x, unit_x))
gp.ylabel("%s [%s]" % (descr_y, unit_y))
gp.plot(Data(data_x, data_y, **kwargs))
def write_datafile(self, filename, expr_x, expr_y):
(data_x, label_x), (data_y, label_y) = self.get_plot_data(
expr_x, expr_y)
outf = open(filename, "w")
outf.write("# %s [%s] vs. %s [%s]" %
(descr_x, unit_x, descr_y, unit_y))
for dx, dy in zip(data_x, data_y):
outf.write("%s\t%s\n" % (repr(dx), repr(dy)))
outf.close()
def plot_matplotlib(self, expr_x, expr_y):
from pylab import xlabel, ylabel, plot
(data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \
self.get_plot_data(expr_x, expr_y)
xlabel("%s [%s]" % (descr_x, unit_x))
ylabel("%s [%s]" % (descr_y, unit_y))
xlabel(label_x)
ylabel(label_y)
plot(data_x, data_y)
# private functionality ---------------------------------------------------
def _parse_expr(self, expr):
from pymbolic import parse, substitute
parsed = parse(expr)
# substitute in global constants
parsed = substitute(parsed, self.constants)
return parsed
def _get_expr_dep_data(self, parsed):
from pymbolic import get_dependencies
deps = get_dependencies(parsed)
# gather information on aggregation expressions
dep_data = []
from pymbolic.primitives import Variable, Lookup, Subscript
for dep_idx, dep in enumerate(deps):
if isinstance(dep, Variable):
name = dep.name
agg_func = self.quantity_data[name].default_aggregator
if agg_func is None:
if self.is_parallel:
raise ValueError, "must specify explicit aggregator for '%s'" % name
else:
agg_func = lambda lst: lst[0]
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
elif isinstance(dep, Lookup):
assert isinstance(dep.aggregate, Variable)
name = dep.aggregate.name
agg_name = dep.name
if agg_name == "min":
agg_func = min
elif agg_name == "max":
agg_func = max
elif agg_name == "avg":
from pytools import average
agg_func = average
elif agg_name == "sum":
agg_func = sum
elif agg_name == "norm2":
from math import sqrt
agg_func = lambda iterable: sqrt(
sum(entry**2 for entry in iterable))
else:
raise ValueError, "invalid rank aggregator '%s'" % agg_name
elif isinstance(dep, Subscript):
assert isinstance(dep.aggregate, Variable)
name = dep.aggregate.name
class Nth:
def __init__(self, n):
self.n = n
def __call__(self, lst):
return lst[self.n]
from pymbolic import evaluate
agg_func = Nth(evaluate(dep.index))
this_dep_data = Record(name=name, qdat=qdat, agg_func=agg_func,
varname="logvar%d" % dep_idx, expr=dep)
dep_data.append(this_dep_data)
# substitute in the "logvar" variable names
from pymbolic import var, substitute
parsed = substitute(parsed,
dict((dd.expr, var(dd.varname)) for dd in dep_data))
return parsed, dep_data
def _watch_tick(self):
def get_last_value(table):
if table:
return table.data[-1][2]
else:
return 0
data_block = dict((qname, get_last_value(self.get_table(qname)))
for qname in self.quantity_data.iterkeys())
if self.mpi_comm is not None:
from boost.mpi import broadcast, gather
gathered_data = gather(self.mpi_comm, data_block, self.head_rank)
else:
gathered_data = [data_block]
if self.rank == self.head_rank:
values = {}
for data_block in gathered_data:
for name, value in data_block.iteritems():
values.setdefault(name, []).append(value)
if self.watches:
print " | ".join(
"%s=%g" % (watch.expr, watch.compiled(
*[dd.agg_func(values[dd.name]) for dd in watch.dep_data]))
for watch in self.watches
)
ticks_per_sec = self.tick_count/max(1, time()-self.start_time)
self.next_watch_tick = self.tick_count + int(max(1, ticks_per_sec))
if self.mpi_comm is not None:
self.next_watch_tick = broadcast(self.mpi_comm,
self.next_watch_tick, self.head_rank)
# actual data loggers ---------------------------------------------------------
class IntervalTimer(LogQuantity):
"""Records the elapsed time between L{start} and L{stop} calls."""
def __init__(self, name="interval", description=None):
LogQuantity.__init__(self, name, "s", description)
self.elapsed = 0
def start(self):
self.start_time = time()
def stop(self):
self.elapsed += time() - self.start_time
del self.start_time
def __call__(self):
result = self.elapsed
self.elapsed = 0
return result
class LogUpdateDuration(LogQuantity):
"""Records how long the last L{LogManager.tick} invocation took."""
def __init__(self, mgr, name="t_log"):
LogQuantity.__init__(self, name, "s", "Time spent updating the log")
self.log_manager = mgr
def __call__(self):
return self.log_manager.t_log
"""Counts events signaled by L{add}."""
def __init__(self, name="interval", description=None):
LogQuantity.__init__(self, name, "1", description)
self.events = 0
def add(self, n=1):
self.events += n
def transfer(self, counter):
self.events += counter.pop()
def __call__(self):
result = self.events
self.events = 0
return result
class TimestepCounter(LogQuantity):
"""Counts the number of times L{LogManager.tick} is called."""
def __init__(self, name="step"):
LogQuantity.__init__(self, name, "1", "Timesteps")
self.steps = 0
def __call__(self):
result = self.steps
self.steps += 1
return result
class TimestepDuration(LogQuantity):
"""Records the CPU time between invocations of L{LogManager.tick}."""
def __init__(self, name="t_step"):
LogQuantity.__init__(self, name, "s", "Time step duration")
self.last_start = time()
def __call__(self):
now = time()
result = now - self.last_start
self.last_start = now
return result
class CPUTime(LogQuantity):
"""Records (monotonically increasing) CPU time."""
def __init__(self, name="t_cpu"):
LogQuantity.__init__(self, name, "s", "Wall time")
self.start = time()
def __call__(self):
return time()-self.start
class ETA(LogQuantity):
"""Records an estimate of how long the computation will still take."""
def __init__(self, total_steps, name="t_eta"):
LogQuantity.__init__(self, name, "s", "Estimated remaining duration")
self.steps = 0
self.total_steps = total_steps
self.start = time()
def __call__(self):
fraction_done = self.steps/self.total_steps
self.steps += 1
time_spent = time()-self.start
if fraction_done > 1e-9:
return time_spent/fraction_done-time_spent
else:
return 0
def add_general_quantities(mgr):
"""Add generally applicable L{LogQuantity} objects to C{mgr}."""
mgr.add_quantity(TimestepDuration())
mgr.add_quantity(CPUTime())
mgr.add_quantity(LogUpdateDuration(mgr))
mgr.add_quantity(TimestepCounter())
class SimulationTime(SimulationLogQuantity):
"""Record (monotonically increasing) simulation time."""
def __init__(self, dt, name="t_sim", start=0):
SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Time")
self.t = 0
def __call__(self):
result = self.t
self.t += self.dt
return result
class Timestep(SimulationLogQuantity):
"""Record the magnitude of the simulated time step."""
Andreas Klöckner
committed
def __init__(self, dt, name="dt"):
SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Timestep")
Andreas Klöckner
committed
def __call__(self):
return self.dt
def set_dt(mgr, dt):
"""Set the simulation timestep on L{LogManager} C{mgr} to C{dt}."""
for qdat in mgr.quantity_data.itervalues():
qdat.quantity.set_dt(dt)
Andreas Klöckner
committed
def add_simulation_quantities(mgr, dt):
"""Add L{LogQuantity} objects relating to simulation time."""
Andreas Klöckner
committed
mgr.add_quantity(Timestep(dt))
def add_run_info(mgr):
"""Add generic run metadata, such as command line, host, and time."""
import sys
mgr.set_constant("cmdline", " ".join(sys.argv))
from socket import gethostname
mgr.set_constant("machine", gethostname())
from time import localtime, strftime
mgr.set_constant("date", strftime("%a, %d %b %Y %H:%M:%S %Z", localtime()))