Newer
Older
# timing function -------------------------------------------------------------
def time():
"""Return elapsed CPU time, as a float, in seconds."""
import os
time_opt = os.environ.get("PYTOOLS_LOG_TIME")
if time_opt == "wall":
from time import time
return time()
else:
from resource import getrusage, RUSAGE_SELF
return getrusage(RUSAGE_SELF).ru_utime
# abstract logging interface --------------------------------------------------
def __init__(self, name, unit=None, description=None):
self.name = name
self.unit = unit
self.description = description
@property
def default_aggregator(self): return None
"""Return the current value of the diagnostic represented by this
L{LogQuantity}."""
class MultiLogQuantity(object):
"""A source of multiple loggable scalars."""
def __init__(self, names, units=None, descriptions=None):
self.names = names
self.units = units
self.descriptions = descriptions
@property
def default_aggregators(self): return [None] * len(self.names)
def __call__(self):
"""Return an iterable of the current values of the diagnostic represented
by this L{MultiLogQuantity}."""
raise NotImplementedError
class DtConsumer(object):
def __init__(self, dt):
self.dt = dt
def set_dt(self, dt):
self.dt = dt
class SimulationLogQuantity(LogQuantity, DtConsumer):
"""A source of loggable scalars that needs to know the simulation timestep."""
def __init__(self, dt, name, unit=None, description=None):
LogQuantity.__init__(self, name, unit, description)
DtConsumer.__init__(self, dt)
class CallableLogQuantityAdapter(LogQuantity):
"""Adapt a 0-ary callable as a L{LogQuantity}."""
def __init__(self, callable, name, unit=None, description=None):
self.callable = callable
LogQuantity.__init__(self, name, unit, description)
def __call__(self):
return self.callable()
# manager functionality -------------------------------------------------------
class _GatherDescriptor(object):
def __init__(self, quantity, interval):
self.quantity = quantity
self.interval = interval
class _QuantityData(object):
def __init__(self, unit, description, default_aggregator, table=None):
self.unit = unit
self.description = description
self.default_aggregator = default_aggregator
if table is None:
from pytools.datatable import DataTable
self.table = DataTable(["step", "rank", "value"])
else:
self.table = table.copy()
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def _join_by_first_of_tuple(list_of_iterables):
loi = [i.__iter__() for i in list_of_iterables]
if not loi:
return
key_vals = [iter.next() for iter in loi]
keys = [kv[0] for kv in key_vals]
values = [kv[1] for kv in key_vals]
target_key = max(keys)
force_advance = False
i = 0
while True:
while keys[i] < target_key or force_advance:
try:
new_key, new_value = loi[i].next()
except StopIteration:
return
assert keys[i] < new_key
keys[i] = new_key
values[i] = new_value
if new_key > target_key:
target_key = new_key
force_advance = False
i += 1
if i >= len(loi):
i = 0
if min(keys) == target_key:
yield target_key, values[:]
force_advance = True
"""A parallel-capable diagnostic time-series logging facility.
A C{LogManager} logs any number of named time series of floats to
a file. Non-time-series data, in the form of constants, is also
supported and saved.
If MPI parallelism is used, the "head rank" below always refers to
rank 0.
A command line tool called C{logtool} is available for looking at the
data in a saved log.
"""
def __init__(self, filename=None, mpi_comm=None):
"""Initialize this log manager instance.
@arg filename: If given, the log is periodically written to this file.
@arg mpi_comm: A C{boost.mpi} communicator. If given, logs are periodically
synchronized to the head node, which then writes them out to disk.
"""
self.quantity_data = {}
Andreas Klöckner
committed
self.filename = filename
Andreas Klöckner
committed
if filename is not None:
from os import access, R_OK
if access(self.filename, R_OK):
raise IOError, "cowardly refusing to overwrite '%s'" % self.filename
self.start_time = time()
Andreas Klöckner
committed
# parallel support
self.head_rank = 0
self.mpi_comm = mpi_comm
self.is_parallel = mpi_comm is not None
if mpi_comm is None:
self.rank = 0
self.last_checkpoint = self.start_time
else:
self.rank = mpi_comm.rank
self.head_rank = 0
# watch stuff
self.watches = []
self.next_watch_tick = 1
def add_watches(self, watches):
"""Add quantities that are printed after every time step."""
from pytools import Record
for watch in watches:
parsed = self._parse_expr(watch)
parsed, dep_data = self._get_expr_dep_data(parsed)
from pymbolic import compile
compiled = compile(parsed, [dd.varname for dd in dep_data])
watch_info = Record(expr=watch, parsed=parsed, dep_data=dep_data,
compiled=compiled)
self.watches.append(watch_info)
def set_constant(self, name, value):
"""Make a named, constant value available in the log."""
self.constants[name] = value
"""Record data points from each added L{LogQuantity}.
May also checkpoint data to disk, and/or synchronize data points
to the head rank.
"""
start_time = time()
for gd in self.gather_descriptors:
if self.tick_count % gd.interval == 0:
q_value = gd.quantity()
if isinstance(gd.quantity, MultiLogQuantity):
for name, value in zip(gd.quantity.names, q_value):
self.quantity_data[name].table.insert_row(
(self.tick_count, self.rank, value))
else:
self.quantity_data[gd.quantity.name].table.insert_row(
(self.tick_count, self.rank, q_value))
end_time = time()
self.t_log = end_time - start_time
# print watches
if self.tick_count == self.next_watch_tick:
self._watch_tick()
# synchronize logs with parallel peers, if necessary
if self.mpi_comm is not None:
# parallel-case : sync, then checkpoint
if self.tick_count == self.next_sync_tick:
if self.filename is not None:
# implicitly synchronizes
self.save()
else:
self.synchronize_logs()
# figure out next sync tick, broadcast to peers
ticks_per_20_sec = 20*self.tick_count/max(1, end_time-self.start_time)
next_sync_tick = self.tick_count + int(max(10, ticks_per_20_sec))
from boost.mpi import broadcast
self.next_sync_tick = broadcast(self.mpi_comm, next_sync_tick, self.head_rank)
else:
# non-parallel-case : checkpoint log to disk, if necessary
if self.filename is not None:
if end_time - self.last_checkpoint > 10:
self.save()
self.last_checkpoint = end_time
def synchronize_logs(self):
"""Transfer data from client ranks to the head rank.
Must be called on all ranks simultaneously."""
if self.mpi_comm is None:
return
from boost.mpi import gather
if self.mpi_comm.rank == self.head_rank:
for rank_data in gather(self.mpi_comm, None, self.head_rank)[1:]:
for name, rows in rank_data:
self.quantity_data[name].table.insert_rows(rows)
else:
# send non-head data away
gather(self.mpi_comm,
[(name, qdat.table.data)
for name, qdat in self.quantity_data.iteritems()],
self.head_rank)
# and erase it
for qdat in self.quantity_data.itervalues():
qdat.table.clear()
Andreas Klöckner
committed
def add_quantity(self, quantity, interval=1):
"""Add an object derived from L{LogQuantity} to this manager."""
self.gather_descriptors.append(_GatherDescriptor(quantity, interval))
if isinstance(quantity, MultiLogQuantity):
for name, unit, description, def_agg in zip(
quantity.names,
quantity.units,
quantity.descriptions,
quantity.default_aggregators):
self.quantity_data[name] = _QuantityData(
unit, description, def_agg)
else:
self.quantity_data[quantity.name] = _QuantityData(
quantity.unit, quantity.description,
quantity.default_aggregator)
def get_expr_dataset(self, expression, description=None, unit=None):
"""Prepare a time-series dataset for a given expression.
@arg expression: A C{pymbolic} expression that may involve
the time-series variables and the constants in this L{LogManager}.
If there is data from multiple ranks for a quantity occuring in
this expression, an aggregator may have to be specified.
@return: C{(description, unit, table)}, where C{table}
is a list of tuples C{(tick_nbr, value)}.
Aggregators are specified as follows:
- C{qty.min}, C{qty.max}, C{qty.avg}, C{qty.sum}, C{qty.norm2}
- C{qty[rank_nbr]
parsed = self._parse_expr(expression)
parsed, dep_data = self._get_expr_dep_data(parsed)
# aggregate table data
for dd in dep_data:
table = self.quantity_data[dd.name].table
table.sort(["step"])
dd.table = table.aggregated(["step"], "value", dd.agg_func).data
# evaluate unit and description, if necessary
if unit is None:
from pymbolic import substitute, parse
unit = substitute(parsed,
dict((dd.varname, parse(dd.qdat.unit)) for dd in dep_data)
)
if description is None:
description = expression
# compile and evaluate
from pymbolic import compile
compiled = compile(parsed, [dd.varname for dd in dep_data])
return (description,
unit,
[(key, compiled(*values))
for key, values in _join_by_first_of_tuple(
dd.table for dd in dep_data)
])
def get_joint_dataset(self, expressions):
"""Return a joint data set for a list of expressions.
@arg expressions: a list of either strings representing
expressions directly, or triples (descr, unit, expr).
In the former case, the description and the unit are
found automatically, if possible. In the latter case,
they are used as specified.
@return: A triple C{(descriptions, units, table)}, where
C{table} is a a list of C{[(tstep, (val_expr1, val_expr2,...)...]}.
# dubs is a list of (desc, unit, table) triples as
# returned by get_expr_dataset
dubs = []
for expr in expressions:
if isinstance(expr, str):
dub = self.get_expr_dataset(expr)
else:
expr_descr, expr_unit, expr_str = expr
dub = get_expr_dataset(
expr_str,
description=expr_descr,
unit=expr_unit)
dubs.append(dub)
zipped_dubs = list(zip(*dubs))
zipped_dubs[2] = list(
_join_by_first_of_tuple(zipped_dubs[2]))
return zipped_dubs
Andreas Klöckner
committed
def save(self, filename=None):
"""Save log data to a file.
L{synchronize_logs} is called before saving.
@arg filename: Specify the file name. If not given, the globally set name
is used.
"""
self.synchronize_logs()
if self.mpi_comm and self.mpi_comm.rank != self.head_rank:
return
Andreas Klöckner
committed
if filename is not None:
from os import access, R_OK
if access(filename, R_OK):
raise IOError, "cowardly refusing to overwrite '%s'" % filename
else:
filename = self.filename
dump((self.quantity_data, self.constants, self.is_parallel),
Andreas Klöckner
committed
open(filename, "w"), protocol=HIGHEST_PROTOCOL)
"""Load saved log data from C{filename}."""
if self.mpi_comm and self.mpi_comm.rank != self.head_rank:
return
self.quantity_data, self.constants, self.is_parallel = load(open(filename))
def get_plot_data(self, expr_x, expr_y, min_step=None, max_step=None):
"""Generate plot-ready data.
@return: C{(data_x, descr_x, unit_x), (data_y, descr_y, unit_y)}
"""
(descr_x, descr_y), (unit_x, unit_y), data = \
self.get_joint_dataset([expr_x, expr_y])
if min_step is not None:
data = [(step, tup) for step, tup in data if min_step <= step]
if max_step is not None:
data = [(step, tup) for step, tup in data if step <= max_step]
stepless_data = [tup for step, tup in data]
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
data_x, data_y = zip(*stepless_data)
return (data_x, descr_x, unit_x), \
(data_y, descr_y, unit_y)
def plot_gnuplot(self, gp, expr_x, expr_y, **kwargs):
"""Plot data to Gnuplot.py.
@arg gp: a Gnuplot.Gnuplot instance to which the plot is sent.
@arg expr_x: an allowed argument to L{get_joint_dataset}.
@arg expr_y: an allowed argument to L{get_joint_dataset}.
@arg kwargs: keyword arguments that are directly passed on to
C{Gnuplot.Data}.
"""
(data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \
self.get_plot_data(expr_x, expr_y)
gp.xlabel("%s [%s]" % (descr_x, unit_x))
gp.ylabel("%s [%s]" % (descr_y, unit_y))
gp.plot(Data(data_x, data_y, **kwargs))
def write_datafile(self, filename, expr_x, expr_y):
(data_x, label_x), (data_y, label_y) = self.get_plot_data(
expr_x, expr_y)
outf = open(filename, "w")
outf.write("# %s [%s] vs. %s [%s]" %
(descr_x, unit_x, descr_y, unit_y))
for dx, dy in zip(data_x, data_y):
outf.write("%s\t%s\n" % (repr(dx), repr(dy)))
outf.close()
def plot_matplotlib(self, expr_x, expr_y):
from pylab import xlabel, ylabel, plot
(data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \
self.get_plot_data(expr_x, expr_y)
xlabel("%s [%s]" % (descr_x, unit_x))
ylabel("%s [%s]" % (descr_y, unit_y))
xlabel(label_x)
ylabel(label_y)
plot(data_x, data_y)
# private functionality ---------------------------------------------------
def _parse_expr(self, expr):
from pymbolic import parse, substitute
parsed = parse(expr)
# substitute in global constants
parsed = substitute(parsed, self.constants)
return parsed
def _get_expr_dep_data(self, parsed):
from pymbolic import get_dependencies
deps = get_dependencies(parsed)
# gather information on aggregation expressions
dep_data = []
from pymbolic.primitives import Variable, Lookup, Subscript
for dep_idx, dep in enumerate(deps):
if isinstance(dep, Variable):
name = dep.name
agg_func = self.quantity_data[name].default_aggregator
if agg_func is None:
if self.is_parallel:
raise ValueError, "must specify explicit aggregator for '%s'" % name
else:
agg_func = lambda lst: lst[0]
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
elif isinstance(dep, Lookup):
assert isinstance(dep.aggregate, Variable)
name = dep.aggregate.name
agg_name = dep.name
if agg_name == "min":
agg_func = min
elif agg_name == "max":
agg_func = max
elif agg_name == "avg":
from pytools import average
agg_func = average
elif agg_name == "sum":
agg_func = sum
elif agg_name == "norm2":
from math import sqrt
agg_func = lambda iterable: sqrt(
sum(entry**2 for entry in iterable))
else:
raise ValueError, "invalid rank aggregator '%s'" % agg_name
elif isinstance(dep, Subscript):
assert isinstance(dep.aggregate, Variable)
name = dep.aggregate.name
class Nth:
def __init__(self, n):
self.n = n
def __call__(self, lst):
return lst[self.n]
from pymbolic import evaluate
agg_func = Nth(evaluate(dep.index))
this_dep_data = Record(name=name, qdat=qdat, agg_func=agg_func,
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
varname="logvar%d" % dep_idx, expr=dep)
dep_data.append(this_dep_data)
# substitute in the "logvar" variable names
from pymbolic import var, substitute
parsed = substitute(parsed,
dict((dd.expr, var(dd.varname)) for dd in dep_data))
return parsed, dep_data
def _watch_tick(self):
def get_last_value(table):
if table:
return table.data[-1][2]
else:
return 0
data_block = dict((name, get_last_value(qdat.table))
for name, qdat in self.quantity_data.iteritems())
if self.mpi_comm is not None:
from boost.mpi import broadcast, gather
gathered_data = gather(self.mpi_comm, data_block, self.head_rank)
else:
gathered_data = [data_block]
if self.rank == self.head_rank:
values = {}
for data_block in gathered_data:
for name, value in data_block.iteritems():
values.setdefault(name, []).append(value)
print " | ".join(
"%s=%g" % (watch.expr, watch.compiled(
*[dd.agg_func(values[dd.name]) for dd in watch.dep_data]))
for watch in self.watches
)
ticks_per_sec = self.tick_count/max(1, time()-self.start_time)
self.next_watch_tick = self.tick_count + int(max(1, ticks_per_sec))
if self.mpi_comm is not None:
self.next_watch_tick = broadcast(self.mpi_comm,
self.next_watch_tick, self.head_rank)
# actual data loggers ---------------------------------------------------------
class IntervalTimer(LogQuantity):
"""Records the elapsed time between L{start} and L{stop} calls."""
def __init__(self, name="interval", description=None):
LogQuantity.__init__(self, name, "s", description)
self.elapsed = 0
def start(self):
self.start_time = time()
def stop(self):
self.elapsed += time() - self.start_time
del self.start_time
def __call__(self):
result = self.elapsed
self.elapsed = 0
return result
class LogUpdateDuration(LogQuantity):
"""Records how long the last L{LogManager.tick} invocation took."""
def __init__(self, mgr, name="t_log"):
LogQuantity.__init__(self, name, "s", "Time spent updating the log")
self.log_manager = mgr
def __call__(self):
return self.log_manager.t_log
"""Counts events signaled by L{add}."""
def __init__(self, name="interval", description=None):
LogQuantity.__init__(self, name, "1", description)
self.events = 0
def add(self, n=1):
self.events += n
def transfer(self, counter):
self.events += counter.pop()
def __call__(self):
result = self.events
self.events = 0
return result
class TimestepCounter(LogQuantity):
"""Counts the number of times L{LogManager.tick} is called."""
def __init__(self, name="step"):
LogQuantity.__init__(self, name, "1", "Timesteps")
self.steps = 0
def __call__(self):
result = self.steps
self.steps += 1
return result
class TimestepDuration(LogQuantity):
"""Records the CPU time between invocations of L{LogManager.tick}."""
def __init__(self, name="t_step"):
LogQuantity.__init__(self, name, "s", "Time step duration")
self.last_start = time()
def __call__(self):
now = time()
result = now - self.last_start
self.last_start = now
return result
class CPUTime(LogQuantity):
"""Records (monotonically increasing) CPU time."""
def __init__(self, name="t_cpu"):
LogQuantity.__init__(self, name, "s", "Wall time")
self.start = time()
def __call__(self):
return time()-self.start
class ETA(LogQuantity):
"""Records an estimate of how long the computation will still take."""
def __init__(self, total_steps, name="t_eta"):
LogQuantity.__init__(self, name, "s", "Estimated remaining duration")
self.steps = 0
self.total_steps = total_steps
self.start = time()
def __call__(self):
fraction_done = self.steps/self.total_steps
self.steps += 1
time_spent = time()-self.start
if fraction_done > 1e-9:
return time_spent/fraction_done-time_spent
else:
return 0
def add_general_quantities(mgr):
"""Add generally applicable L{LogQuantity} objects to C{mgr}."""
mgr.add_quantity(TimestepDuration())
mgr.add_quantity(CPUTime())
mgr.add_quantity(LogUpdateDuration(mgr))
mgr.add_quantity(TimestepCounter())
class SimulationTime(SimulationLogQuantity):
"""Record (monotonically increasing) simulation time."""
def __init__(self, dt, name="t_sim", start=0):
SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Time")
self.t = 0
def __call__(self):
result = self.t
self.t += self.dt
return result
class Timestep(SimulationLogQuantity):
"""Record the magnitude of the simulated time step."""
Andreas Klöckner
committed
def __init__(self, dt, name="dt"):
SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Timestep")
Andreas Klöckner
committed
def __call__(self):
return self.dt
def set_dt(mgr, dt):
"""Set the simulation timestep on L{LogManager} C{mgr} to C{dt}."""
for qdat in mgr.quantity_data.itervalues():
qdat.quantity.set_dt(dt)
Andreas Klöckner
committed
def add_simulation_quantities(mgr, dt):
"""Add L{LogQuantity} objects relating to simulation time."""
Andreas Klöckner
committed
mgr.add_quantity(Timestep(dt))
def add_run_info(mgr):
"""Add generic run metadata, such as command line, host, and time."""
import sys
mgr.set_constant("cmdline", " ".join(sys.argv))
from socket import gethostname
mgr.set_constant("machine", gethostname())
from time import localtime, strftime
mgr.set_constant("date", strftime("%a, %d %b %Y %H:%M:%S %Z", localtime()))