Newer
Older
# timing function -------------------------------------------------------------
def time():
"""Return elapsed CPU time, as a float, in seconds."""
import os
time_opt = os.environ.get("PYTOOLS_LOG_TIME")
if time_opt == "wall":
from time import time
return time()
else:
from resource import getrusage, RUSAGE_SELF
return getrusage(RUSAGE_SELF).ru_utime
# abstract logging interface --------------------------------------------------
class LogQuantity:
def __init__(self, name, unit=None, description=None):
self.name = name
self.unit = unit
self.description = description
@property
def default_aggregator(self): return None
"""Return the current value of the diagnostic represented by this
L{LogQuantity}."""
class SimulationLogQuantity(LogQuantity):
"""A source of loggable scalars that needs to know the simulation timestep."""
def __init__(self, dt, name, unit=None, description=None):
LogQuantity.__init__(self, name, unit, description)
self.dt = dt
def set_dt(self, dt):
self.dt = dt
class CallableLogQuantityAdapter(LogQuantity):
"""Adapt a 0-ary callable as a L{LogQuantity}."""
def __init__(self, callable, name, unit=None, description=None):
self.callable = callable
LogQuantity.__init__(self, name, unit, description)
def __call__(self):
return self.callable()
# manager functionality -------------------------------------------------------
class _QuantityData:
def __init__(self, quantity, interval=1, table=None, default_aggregator=None):
self.quantity = quantity
self.interval = interval
self.default_aggregator = default_aggregator or quantity.default_aggregator
if table is None:
from pytools.datatable import DataTable
self.table = DataTable(["step", "rank", "value"])
else:
self.table = table.copy()
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def _join_by_first_of_tuple(list_of_iterables):
loi = [i.__iter__() for i in list_of_iterables]
if not loi:
return
key_vals = [iter.next() for iter in loi]
keys = [kv[0] for kv in key_vals]
values = [kv[1] for kv in key_vals]
target_key = max(keys)
force_advance = False
i = 0
while True:
while keys[i] < target_key or force_advance:
try:
new_key, new_value = loi[i].next()
except StopIteration:
return
assert keys[i] < new_key
keys[i] = new_key
values[i] = new_value
if new_key > target_key:
target_key = new_key
force_advance = False
i += 1
if i >= len(loi):
i = 0
if min(keys) == target_key:
yield target_key, values[:]
force_advance = True
class LogManager:
"""A parallel-capable diagnostic time-series logging facility.
A C{LogManager} logs any number of named time series of floats to
a file. Non-time-series data, in the form of constants, is also
supported and saved.
If MPI parallelism is used, the "head rank" below always refers to
rank 0.
A command line tool called C{logtool} is available for looking at the
data in a saved log.
"""
def __init__(self, filename=None, mpi_comm=None):
"""Initialize this log manager instance.
@arg filename: If given, the log is periodically written to this file.
@arg mpi_comm: A C{boost.mpi} communicator. If given, logs are periodically
synchronized to the head node, which then writes them out to disk.
"""
self.quantity_data = {}
Andreas Klöckner
committed
self.filename = filename
Andreas Klöckner
committed
if filename is not None:
from os import access, R_OK
if access(self.filename, R_OK):
raise IOError, "cowardly refusing to overwrite '%s'" % self.filename
self.start_time = time()
Andreas Klöckner
committed
# parallel support
self.head_rank = 0
self.mpi_comm = mpi_comm
self.is_parallel = mpi_comm is not None
if mpi_comm is None:
self.rank = 0
self.last_checkpoint = self.start_time
else:
self.rank = mpi_comm.rank
self.head_rank = 0
# watch stuff
self.watches = []
self.next_watch_tick = 1
def add_watches(self, watches):
"""Add quantities that are printed after every time step."""
from pytools import Record
for watch in watches:
parsed = self._parse_expr(watch)
parsed, dep_data = self._get_expr_dep_data(parsed)
from pymbolic import compile
compiled = compile(parsed, [dd.varname for dd in dep_data])
watch_info = Record(expr=watch, parsed=parsed, dep_data=dep_data,
compiled=compiled)
self.watches.append(watch_info)
def set_constant(self, name, value):
"""Make a named, constant value available in the log."""
self.constants[name] = value
"""Record data points from each added L{LogQuantity}.
May also checkpoint data to disk, and/or synchronize data points
to the head rank.
"""
start_time = time()
for qbuf in self.quantity_data.itervalues():
qbuf.table.insert_row((self.tick_count, self.rank, qbuf.quantity()))
end_time = time()
self.t_log = end_time - start_time
# print watches
if self.tick_count == self.next_watch_tick:
self._watch_tick()
# synchronize logs with parallel peers, if necessary
if self.mpi_comm is not None:
# parallel-case : sync, then checkpoint
if self.tick_count == self.next_sync_tick:
if self.filename is not None:
# implicitly synchronizes
self.save()
else:
self.synchronize_logs()
# figure out next sync tick, broadcast to peers
ticks_per_20_sec = 20*self.tick_count/max(1, end_time-self.start_time)
next_sync_tick = self.tick_count + int(max(10, ticks_per_20_sec))
from boost.mpi import broadcast
self.next_sync_tick = broadcast(self.mpi_comm, next_sync_tick, self.head_rank)
else:
# non-parallel-case : checkpoint log to disk, if necessary
if self.filename is not None:
if end_time - self.last_checkpoint > 10:
self.save()
self.last_checkpoint = end_time
def synchronize_logs(self):
"""Transfer data from client ranks to the head rank.
Must be called on all ranks simultaneously."""
if self.mpi_comm is None:
return
from boost.mpi import gather
if self.mpi_comm.rank == self.head_rank:
for rank_data in gather(self.mpi_comm, None, self.head_rank)[1:]:
for name, rows in rank_data:
self.quantity_data[name].table.insert_rows(rows)
else:
# send non-head data away
gather(self.mpi_comm,
[(name, qdat.table.data)
for name, qdat in self.quantity_data.iteritems()],
self.head_rank)
# and erase it
for qdat in self.quantity_data.itervalues():
qdat.table.clear()
Andreas Klöckner
committed
def add_quantity(self, quantity, interval=1):
"""Add an object derived from L{LogQuantity} to this manager."""
self.quantity_data[quantity.name] = _QuantityData(quantity, interval)
def get_expr_dataset(self, expression, description=None, unit=None):
"""Prepare a time-series dataset for a given expression.
@arg expression: A C{pymbolic} expression that may involve
the time-series variables and the constants in this L{LogManager}.
If there is data from multiple ranks for a quantity occuring in
this expression, an aggregator may have to be specified.
@return: C{(description, unit, table)}, where C{table}
is a list of tuples C{(tick_nbr, value)}.
Aggregators are specified as follows:
- C{qty.min}, C{qty.max}, C{qty.avg}, C{qty.sum}, C{qty.norm2}
- C{qty[rank_nbr]
parsed = self._parse_expr(expression)
parsed, dep_data = self._get_expr_dep_data(parsed)
# aggregate table data
for dd in dep_data:
table = self.quantity_data[dd.name].table
table.sort(["step"])
dd.table = table.aggregated(["step"], "value", dd.agg_func).data
# evaluate unit and description, if necessary
if unit is None:
from pymbolic import substitute, parse
unit = substitute(parsed,
dict((dd.varname, parse(dd.quantity.unit)) for dd in dep_data)
)
if description is None:
description = expression
# compile and evaluate
from pymbolic import compile
compiled = compile(parsed, [dd.varname for dd in dep_data])
return (description,
unit,
[(key, compiled(*values))
for key, values in _join_by_first_of_tuple(
dd.table for dd in dep_data)
])
def get_joint_dataset(self, expressions):
"""Return a joint data set for a list of expressions.
@arg expressions: a list of either strings representing
expressions directly, or triples (descr, unit, expr).
In the former case, the description and the unit are
found automatically, if possible. In the latter case,
they are used as specified.
@return: A triple C{(descriptions, units, table)}, where
C{table} is a a list of C{[(tstep, (val_expr1, val_expr2,...)...]}.
# dubs is a list of (desc, unit, table) triples as
# returned by get_expr_dataset
dubs = []
for expr in expressions:
if isinstance(expr, str):
dub = self.get_expr_dataset(expr)
else:
expr_descr, expr_unit, expr_str = expr
dub = get_expr_dataset(
expr_str,
description=expr_descr,
unit=expr_unit)
dubs.append(dub)
zipped_dubs = list(zip(*dubs))
zipped_dubs[2] = list(
_join_by_first_of_tuple(zipped_dubs[2]))
return zipped_dubs
Andreas Klöckner
committed
def save(self, filename=None):
"""Save log data to a file.
L{synchronize_logs} is called before saving.
@arg filename: Specify the file name. If not given, the globally set name
is used.
"""
self.synchronize_logs()
if self.mpi_comm and self.mpi_comm.rank != self.head_rank:
return
Andreas Klöckner
committed
if filename is not None:
from os import access, R_OK
if access(filename, R_OK):
raise IOError, "cowardly refusing to overwrite '%s'" % filename
else:
filename = self.filename
(name, _QuantityData(
qdat.quantity.name,
qdat.quantity.unit,
qdat.quantity.description,
qdat.interval,
qdat.table,
qdat.default_aggregator,
))
for name, qdat in self.quantity_data.iteritems())
from cPickle import dump, HIGHEST_PROTOCOL
dump((save_buffers, self.constants, self.is_parallel),
Andreas Klöckner
committed
open(filename, "w"), protocol=HIGHEST_PROTOCOL)
"""Load saved log data from C{filename}."""
if self.mpi_comm and self.mpi_comm.rank != self.head_rank:
return
self.quantity_data, self.constants, self.is_parallel = load(open(filename))
def get_plot_data(self, expr_x, expr_y, min_step=None, max_step=None):
"""Generate plot-ready data.
@return: C{(data_x, descr_x, unit_x), (data_y, descr_y, unit_y)}
"""
(descr_x, descr_y), (unit_x, unit_y), data = \
self.get_joint_dataset([expr_x, expr_y])
if min_step is not None:
data = [(step, tup) for step, tup in data if min_step <= step]
if max_step is not None:
data = [(step, tup) for step, tup in data if step <= max_step]
stepless_data = [tup for step, tup in data]
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
data_x, data_y = zip(*stepless_data)
return (data_x, descr_x, unit_x), \
(data_y, descr_y, unit_y)
def plot_gnuplot(self, gp, expr_x, expr_y, **kwargs):
"""Plot data to Gnuplot.py.
@arg gp: a Gnuplot.Gnuplot instance to which the plot is sent.
@arg expr_x: an allowed argument to L{get_joint_dataset}.
@arg expr_y: an allowed argument to L{get_joint_dataset}.
@arg kwargs: keyword arguments that are directly passed on to
C{Gnuplot.Data}.
"""
(data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \
self.get_plot_data(expr_x, expr_y)
gp.xlabel("%s [%s]" % (descr_x, unit_x))
gp.ylabel("%s [%s]" % (descr_y, unit_y))
gp.plot(Data(data_x, data_y, **kwargs))
def write_datafile(self, filename, expr_x, expr_y):
(data_x, label_x), (data_y, label_y) = self.get_plot_data(
expr_x, expr_y)
outf = open(filename, "w")
outf.write("# %s [%s] vs. %s [%s]" %
(descr_x, unit_x, descr_y, unit_y))
for dx, dy in zip(data_x, data_y):
outf.write("%s\t%s\n" % (repr(dx), repr(dy)))
outf.close()
def plot_matplotlib(self, expr_x, expr_y):
from pylab import xlabel, ylabel, plot
(data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \
self.get_plot_data(expr_x, expr_y)
xlabel("%s [%s]" % (descr_x, unit_x))
ylabel("%s [%s]" % (descr_y, unit_y))
xlabel(label_x)
ylabel(label_y)
plot(data_x, data_y)
# private functionality ---------------------------------------------------
def _parse_expr(self, expr):
from pymbolic import parse, substitute
parsed = parse(expr)
# substitute in global constants
parsed = substitute(parsed, self.constants)
return parsed
def _get_expr_dep_data(self, parsed):
from pymbolic import get_dependencies
deps = get_dependencies(parsed)
# gather information on aggregation expressions
dep_data = []
from pymbolic.primitives import Variable, Lookup, Subscript
for dep_idx, dep in enumerate(deps):
if isinstance(dep, Variable):
name = dep.name
agg_func = self.quantity_data[name].default_aggregator
if agg_func is None:
if self.is_parallel:
raise ValueError, "must specify explicit aggregator for '%s'" % name
else:
agg_func = lambda lst: lst[0]
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
elif isinstance(dep, Lookup):
assert isinstance(dep.aggregate, Variable)
name = dep.aggregate.name
agg_name = dep.name
if agg_name == "min":
agg_func = min
elif agg_name == "max":
agg_func = max
elif agg_name == "avg":
from pytools import average
agg_func = average
elif agg_name == "sum":
agg_func = sum
elif agg_name == "norm2":
from math import sqrt
agg_func = lambda iterable: sqrt(
sum(entry**2 for entry in iterable))
else:
raise ValueError, "invalid rank aggregator '%s'" % agg_name
elif isinstance(dep, Subscript):
assert isinstance(dep.aggregate, Variable)
name = dep.aggregate.name
class Nth:
def __init__(self, n):
self.n = n
def __call__(self, lst):
return lst[self.n]
from pymbolic import evaluate
agg_func = Nth(evaluate(dep.index))
quantity = self.quantity_data[name].quantity
from pytools import Record
this_dep_data = Record(name=name, quantity=quantity,
agg_func=agg_func,
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
varname="logvar%d" % dep_idx, expr=dep)
dep_data.append(this_dep_data)
# substitute in the "logvar" variable names
from pymbolic import var, substitute
parsed = substitute(parsed,
dict((dd.expr, var(dd.varname)) for dd in dep_data))
return parsed, dep_data
def _watch_tick(self):
def get_last_value(table):
if table:
return table.data[-1][2]
else:
return 0
data_block = dict((name, get_last_value(qdat.table))
for name, qdat in self.quantity_data.iteritems())
if self.mpi_comm is not None:
from boost.mpi import broadcast, gather
gathered_data = gather(self.mpi_comm, data_block, self.head_rank)
else:
gathered_data = [data_block]
if self.rank == self.head_rank:
values = {}
for data_block in gathered_data:
for name, value in data_block.iteritems():
values.setdefault(name, []).append(value)
print " | ".join(
"%s=%g" % (watch.expr, watch.compiled(
*[dd.agg_func(values[dd.name]) for dd in watch.dep_data]))
for watch in self.watches
)
ticks_per_sec = self.tick_count/max(1, time()-self.start_time)
self.next_watch_tick = self.tick_count + int(max(1, ticks_per_sec))
if self.mpi_comm is not None:
self.next_watch_tick = broadcast(self.mpi_comm,
self.next_watch_tick, self.head_rank)
# actual data loggers ---------------------------------------------------------
class IntervalTimer(LogQuantity):
"""Records the elapsed time between L{start} and L{stop} calls."""
def __init__(self, name="interval", description=None):
LogQuantity.__init__(self, name, "s", description)
self.elapsed = 0
def start(self):
self.start_time = time()
def stop(self):
self.elapsed += time() - self.start_time
del self.start_time
def __call__(self):
result = self.elapsed
self.elapsed = 0
return result
class LogUpdateDuration(LogQuantity):
"""Records how long the last L{LogManager.tick} invocation took."""
def __init__(self, mgr, name="t_log"):
LogQuantity.__init__(self, name, "s", "Time spent updating the log")
self.log_manager = mgr
def __call__(self):
return self.log_manager.t_log
"""Counts events signaled by L{add}."""
def __init__(self, name="interval", description=None):
LogQuantity.__init__(self, name, "1", description)
self.events = 0
def add(self, n=1):
self.events += n
def transfer(self, counter):
self.events += counter.pop()
def __call__(self):
result = self.events
self.events = 0
return result
class TimestepCounter(LogQuantity):
"""Counts the number of times L{LogManager.tick} is called."""
def __init__(self, name="step"):
LogQuantity.__init__(self, name, "1", "Timesteps")
self.steps = 0
def __call__(self):
result = self.steps
self.steps += 1
return result
class TimestepDuration(LogQuantity):
"""Records the CPU time between invocations of L{LogManager.tick}."""
def __init__(self, name="t_step"):
LogQuantity.__init__(self, name, "s", "Time step duration")
self.last_start = time()
def __call__(self):
now = time()
result = now - self.last_start
self.last_start = now
return result
class CPUTime(LogQuantity):
"""Records (monotonically increasing) CPU time."""
def __init__(self, name="t_cpu"):
LogQuantity.__init__(self, name, "s", "Wall time")
self.start = time()
def __call__(self):
return time()-self.start
def add_general_quantities(mgr):
"""Add generally applicable L{LogQuantity} objects to C{mgr}."""
mgr.add_quantity(TimestepDuration())
mgr.add_quantity(CPUTime())
mgr.add_quantity(LogUpdateDuration(mgr))
mgr.add_quantity(TimestepCounter())
class SimulationTime(SimulationLogQuantity):
"""Record (monotonically increasing) simulation time."""
def __init__(self, dt, name="t_sim", start=0):
SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Time")
self.t = 0
def __call__(self):
result = self.t
self.t += self.dt
return result
class Timestep(SimulationLogQuantity):
"""Record the magnitude of the simulated time step."""
Andreas Klöckner
committed
def __init__(self, dt, name="dt"):
SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Timestep")
Andreas Klöckner
committed
def __call__(self):
return self.dt
def set_dt(mgr, dt):
"""Set the simulation timestep on L{LogManager} C{mgr} to C{dt}."""
for qdat in mgr.quantity_data.itervalues():
if isinstance(qdat.quantity, SimulationLogQuantity):
qdat.quantity.set_dt(dt)
Andreas Klöckner
committed
def add_simulation_quantities(mgr, dt):
"""Add L{LogQuantity} objects relating to simulation time."""
Andreas Klöckner
committed
mgr.add_quantity(Timestep(dt))
def add_run_info(mgr):
"""Add generic run metadata, such as command line, host, and time."""
import sys
mgr.set_constant("cmdline", " ".join(sys.argv))
from socket import gethostname
mgr.set_constant("machine", gethostname())
from time import localtime, strftime
mgr.set_constant("date", strftime("%a, %d %b %Y %H:%M:%S %Z", localtime()))