Skip to content
Snippets Groups Projects
demo_meta_template.py 1.41 KiB
Newer Older
import pyopencl as cl
import numpy
import numpy.linalg as la

local_size = 256
thread_strides = 32
macroblock_count = 33
dtype = numpy.float32
total_size = local_size*thread_strides*macroblock_count
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

a = numpy.random.randn(total_size).astype(dtype)
b = numpy.random.randn(total_size).astype(dtype)

mf = cl.mem_flags
a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a)
b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b)
c_buf = cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes)

from mako.template import Template

tpl = Template("""
    __kernel void add(
Andreas Klöckner's avatar
Andreas Klöckner committed
            __global ${ type_name } *tgt,
            __global const ${ type_name } *op1,
            __global const ${ type_name } *op2)
      int idx = get_local_id(0)
        + ${ local_size } * ${ thread_strides }
        * get_group_id(0);
      % for i in range(thread_strides):
          <% offset = i*local_size %>
Andreas Klöckner's avatar
Andreas Klöckner committed
          tgt[idx + ${ offset }] =
            op1[idx + ${ offset }]
            + op2[idx + ${ offset } ];
      % endfor
Andreas Klöckner's avatar
Andreas Klöckner committed
rendered_tpl = tpl.render(type_name="float",
    local_size=local_size, thread_strides=thread_strides)
knl = cl.Program(ctx, str(rendered_tpl)).build().add
knl(queue, (local_size*macroblock_count,), (local_size,),
        c_buf, a_buf, b_buf)

c = numpy.empty_like(a)
Andreas Klöckner's avatar
Andreas Klöckner committed
cl.enqueue_copy(queue, c, c_buf).wait()

assert la.norm(c-(a+b)) == 0