import pyopencl as cl import numpy import numpy.linalg as la local_size = 256 thread_strides = 32 macroblock_count = 33 dtype = numpy.float32 total_size = local_size*thread_strides*macroblock_count ctx = cl.create_some_context() queue = cl.CommandQueue(ctx) a = numpy.random.randn(total_size).astype(dtype) b = numpy.random.randn(total_size).astype(dtype) mf = cl.mem_flags a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a) b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b) c_buf = cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes) from mako.template import Template tpl = Template(""" __kernel void add( __global ${ type_name } *tgt, __global const ${ type_name } *op1, __global const ${ type_name } *op2) { int idx = get_local_id(0) + ${ local_size } * ${ thread_strides } * get_group_id(0); % for i in range(thread_strides): <% offset = i*local_size %> tgt[idx + ${ offset }] = op1[idx + ${ offset }] + op2[idx + ${ offset } ]; % endfor }""") rendered_tpl = tpl.render(type_name="float", local_size=local_size, thread_strides=thread_strides) knl = cl.Program(ctx, str(rendered_tpl)).build().add knl(queue, (local_size*macroblock_count,), (local_size,), c_buf, a_buf, b_buf) c = numpy.empty_like(a) cl.enqueue_copy(queue, c, c_buf).wait() assert la.norm(c-(a+b)) == 0