Newer
Older
#! /usr/bin/env python
__copyright__ = "Copyright (C) 2013 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import sys
import pytools.test
from pytools import memoize
from test_array import general_clrand
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
from pyopencl.characterize import has_double_support
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# {{{ elementwise
@pytools.test.mark_test.opencl
def test_elwise_kernel(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (50,), np.float32)
b_gpu = clrand(queue, (50,), np.float32)
from pyopencl.elementwise import ElementwiseKernel
lin_comb = ElementwiseKernel(context,
"float a, float *x, float b, float *y, float *z",
"z[i] = a*x[i] + b*y[i]",
"linear_combination")
c_gpu = cl_array.empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
assert la.norm((c_gpu - (5 * a_gpu + 6 * b_gpu)).get()) < 1e-5
@pytools.test.mark_test.opencl
def test_elwise_kernel_with_options(ctx_factory):
from pyopencl.clrandom import rand as clrand
from pyopencl.elementwise import ElementwiseKernel
context = ctx_factory()
queue = cl.CommandQueue(context)
in_gpu = clrand(queue, (50,), np.float32)
options = ['-D', 'ADD_ONE']
add_one = ElementwiseKernel(
context,
"float* out, const float *in",
"""
out[i] = in[i]
#ifdef ADD_ONE
+1
#endif
;
""",
options=options,
)
out_gpu = cl_array.empty_like(in_gpu)
add_one(out_gpu, in_gpu)
gt = in_gpu.get() + 1
gv = out_gpu.get()
assert la.norm(gv - gt) < 1e-5
@pytools.test.mark_test.opencl
def test_ranged_elwise_kernel(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.elementwise import ElementwiseKernel
set_to_seven = ElementwiseKernel(context,
"float *z", "z[i] = 7", "set_to_seven")
for i, slc in enumerate([
slice(5, 20000),
slice(5, 20000, 17),
slice(3000, 5, -1),
slice(1000, -1),
]):
a_gpu = cl_array.zeros(queue, (50000,), dtype=np.float32)
a_cpu = np.zeros(a_gpu.shape, a_gpu.dtype)
a_cpu[slc] = 7
set_to_seven(a_gpu, slice=slc)
assert (a_cpu == a_gpu.get()).all()
@pytools.test.mark_test.opencl
def test_take(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
idx = cl_array.arange(queue, 0, 200000, 2, dtype=np.uint32)
a = cl_array.arange(queue, 0, 600000, 3, dtype=np.float32)
result = cl_array.take(a, idx)
assert ((3 * idx).get() == result.get()).all()
@pytools.test.mark_test.opencl
def test_arange(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
n = 5000
a = cl_array.arange(queue, n, dtype=np.float32)
assert (np.arange(n, dtype=np.float32) == a.get()).all()
@pytools.test.mark_test.opencl
def test_reverse(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
n = 5000
a = np.arange(n).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
a_gpu = a_gpu.reverse()
assert (a[::-1] == a_gpu.get()).all()
@pytools.test.mark_test.opencl
def test_if_positive(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
l = 20000
a_gpu = clrand(queue, (l,), np.float32)
b_gpu = clrand(queue, (l,), np.float32)
a = a_gpu.get()
b = b_gpu.get()
max_a_b_gpu = cl_array.maximum(a_gpu, b_gpu)
min_a_b_gpu = cl_array.minimum(a_gpu, b_gpu)
print(max_a_b_gpu)
print(np.maximum(a, b))
assert la.norm(max_a_b_gpu.get() - np.maximum(a, b)) == 0
assert la.norm(min_a_b_gpu.get() - np.minimum(a, b)) == 0
@pytools.test.mark_test.opencl
def test_take_put(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
for n in [5, 17, 333]:
one_field_size = 8
buf_gpu = cl_array.zeros(queue,
n * one_field_size, dtype=np.float32)
dest_indices = cl_array.to_device(queue,
np.array([0, 1, 2, 3, 32, 33, 34, 35], dtype=np.uint32))
read_map = cl_array.to_device(queue,
np.array([7, 6, 5, 4, 3, 2, 1, 0], dtype=np.uint32))
cl_array.multi_take_put(
arrays=[buf_gpu for i in range(n)],
dest_indices=dest_indices,
src_indices=read_map,
src_offsets=[i * one_field_size for i in range(n)],
dest_shape=(96,))
@pytools.test.mark_test.opencl
def test_astype(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
if not has_double_support(context.devices[0]):
skip("double precision not supported on %s" % context.devices[0])
a_gpu = clrand(queue, (2000,), dtype=np.float32)
a = a_gpu.get().astype(np.float64)
a2 = a_gpu.astype(np.float64).get()
assert a2.dtype == np.float64
assert la.norm(a - a2) == 0, (a, a2)
a_gpu = clrand(queue, (2000,), dtype=np.float64)
a = a_gpu.get().astype(np.float32)
a2 = a_gpu.astype(np.float32).get()
assert a2.dtype == np.float32
assert la.norm(a - a2) / la.norm(a) < 1e-7
# }}}
# {{{ reduction
@pytools.test.mark_test.opencl
def test_sum(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
n = 200000
for dtype in [np.float32, np.complex64]:
a_gpu = general_clrand(queue, (n,), dtype)
a = a_gpu.get()
sum_a = np.sum(a)
sum_a_gpu = cl_array.sum(a_gpu).get()
assert abs(sum_a_gpu - sum_a) / abs(sum_a) < 1e-4
@pytools.test.mark_test.opencl
def test_minmax(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
if has_double_support(context.devices[0]):
dtypes = [np.float64, np.float32, np.int32]
else:
dtypes = [np.float32, np.int32]
for what in ["min", "max"]:
for dtype in dtypes:
a_gpu = clrand(queue, (200000,), dtype)
a = a_gpu.get()
op_a = getattr(np, what)(a)
op_a_gpu = getattr(cl_array, what)(a_gpu).get()
assert op_a_gpu == op_a, (op_a_gpu, op_a, dtype, what)
@pytools.test.mark_test.opencl
def test_subset_minmax(ctx_factory):
from pytest import importorskip
importorskip("mako")
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
l_a = 200000
gran = 5
l_m = l_a - l_a // gran + 1
if has_double_support(context.devices[0]):
dtypes = [np.float64, np.float32, np.int32]
else:
dtypes = [np.float32, np.int32]
for dtype in dtypes:
a_gpu = clrand(queue, (l_a,), dtype)
a = a_gpu.get()
meaningful_indices_gpu = cl_array.zeros(
queue, l_m, dtype=np.int32)
meaningful_indices = meaningful_indices_gpu.get()
j = 0
for i in range(len(meaningful_indices)):
meaningful_indices[i] = j
j = j + 1
if j % gran == 0:
j = j + 1
meaningful_indices_gpu = cl_array.to_device(
queue, meaningful_indices)
b = a[meaningful_indices]
min_a = np.min(b)
min_a_gpu = cl_array.subset_min(meaningful_indices_gpu, a_gpu).get()
assert min_a_gpu == min_a
@pytools.test.mark_test.opencl
def test_dot(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
dtypes = [np.float32, np.complex64]
if has_double_support(context.devices[0]):
dtypes.extend([np.float64, np.complex128])
for a_dtype in dtypes:
for b_dtype in dtypes:
print(a_dtype, b_dtype)
a_gpu = general_clrand(queue, (200000,), a_dtype)
a = a_gpu.get()
b_gpu = general_clrand(queue, (200000,), b_dtype)
b = b_gpu.get()
dot_ab = np.dot(a, b)
dot_ab_gpu = cl_array.dot(a_gpu, b_gpu).get()
assert abs(dot_ab_gpu - dot_ab) / abs(dot_ab) < 1e-4
vdot_ab = np.vdot(a, b)
vdot_ab_gpu = cl_array.vdot(a_gpu, b_gpu).get()
assert abs(vdot_ab_gpu - vdot_ab) / abs(vdot_ab) < 1e-4
@memoize
def make_mmc_dtype(device):
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
("pad", np.int32),
])
name = "minmax_collector"
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
dtype, c_decl = match_dtype_to_c_struct(device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
return dtype, c_decl
@pytools.test.mark_test.opencl
def test_struct_reduce(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
dev, = context.devices
if (dev.vendor == "NVIDIA" and dev.platform.vendor == "Apple"
and dev.driver_version == "8.12.47 310.40.00.05f01"):
pytest.skip("causes a compiler hang on Apple/Nv GPU")
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
mmc_dtype, mmc_c_decl = make_mmc_dtype(context.devices[0])
preamble = mmc_c_decl + r"""//CL//
minmax_collector mmc_neutral()
{
// FIXME: needs infinity literal in real use, ok here
minmax_collector result;
result.cur_min = 1<<30;
result.cur_max = -(1<<30);
return result;
}
minmax_collector mmc_from_scalar(float x)
{
minmax_collector result;
result.cur_min = x;
result.cur_max = x;
return result;
}
minmax_collector agg_mmc(minmax_collector a, minmax_collector b)
{
minmax_collector result = a;
if (b.cur_min < result.cur_min)
result.cur_min = b.cur_min;
if (b.cur_max > result.cur_max)
result.cur_max = b.cur_max;
return result;
}
"""
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (20000,), dtype=np.int32, a=0, b=10**6)
a = a_gpu.get()
from pyopencl.reduction import ReductionKernel
red = ReductionKernel(context, mmc_dtype,
neutral="mmc_neutral()",
reduce_expr="agg_mmc(a, b)", map_expr="mmc_from_scalar(x[i])",
arguments="__global int *x", preamble=preamble)
minmax = red(a_gpu).get()
#print minmax["cur_min"], minmax["cur_max"]
#print np.min(a), np.max(a)
assert abs(minmax["cur_min"] - np.min(a)) < 1e-5
assert abs(minmax["cur_max"] - np.max(a)) < 1e-5
# }}}
# {{{ scan-related
def summarize_error(obtained, desired, orig, thresh=1e-5):
from pytest import importorskip
importorskip("mako")
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
err = obtained - desired
ok_count = 0
bad_count = 0
bad_limit = 200
def summarize_counts():
if ok_count:
entries.append("<%d ok>" % ok_count)
if bad_count >= bad_limit:
entries.append("<%d more bad>" % (bad_count-bad_limit))
entries = []
for i, val in enumerate(err):
if abs(val) > thresh:
if ok_count:
summarize_counts()
ok_count = 0
bad_count += 1
if bad_count < bad_limit:
entries.append("%r (want: %r, got: %r, orig: %r)" % (obtained[i], desired[i],
obtained[i], orig[i]))
else:
if bad_count:
summarize_counts()
bad_count = 0
ok_count += 1
summarize_counts()
return " ".join(entries)
scan_test_counts = [
10,
2 ** 8 - 1,
2 ** 8,
2 ** 8 + 1,
2 ** 10 - 5,
2 ** 10,
2 ** 10 + 5,
2 ** 12 - 5,
2 ** 12,
2 ** 12 + 5,
2 ** 20 - 2 ** 18,
2 ** 20 - 2 ** 18 + 5,
2 ** 20 + 1,
2 ** 20,
2 ** 23 + 3,
Andreas Klöckner
committed
# larger sizes cause out of memory on low-end AMD APUs
]
@pytools.test.mark_test.opencl
def test_scan(ctx_factory):
from pytest import importorskip
importorskip("mako")
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.scan import InclusiveScanKernel, ExclusiveScanKernel
dtype = np.int32
for cls in [
InclusiveScanKernel,
ExclusiveScanKernel
]:
knl = cls(context, dtype, "a+b", "0")
for n in scan_test_counts:
host_data = np.random.randint(0, 10, n).astype(dtype)
dev_data = cl_array.to_device(queue, host_data)
assert (host_data == dev_data.get()).all() # /!\ fails on Nv GT2?? for some drivers
knl(dev_data)
desired_result = np.cumsum(host_data, axis=0)
if cls is ExclusiveScanKernel:
desired_result -= host_data
is_ok = (dev_data.get() == desired_result).all()
if 1 and not is_ok:
print("something went wrong, summarizing error...")
print(summarize_error(dev_data.get(), desired_result, host_data))
print("n:%d %s worked:%s" % (n, cls, is_ok))
assert is_ok
from gc import collect
collect()
@pytools.test.mark_test.opencl
def test_copy_if(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
for n in scan_test_counts:
a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
a = a_dev.get()
from pyopencl.algorithm import copy_if
crit = a_dev.dtype.type(300)
selected = a[a>crit]
selected_dev, count_dev, evt = copy_if(a_dev, "ary[i] > myval", [("myval", crit)])
assert (selected_dev.get()[:count_dev.get()] == selected).all()
from gc import collect
collect()
@pytools.test.mark_test.opencl
def test_partition(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
for n in scan_test_counts:
Andreas Klöckner
committed
a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
a = a_dev.get()
crit = a_dev.dtype.type(300)
true_host = a[a>crit]
false_host = a[a<=crit]
from pyopencl.algorithm import partition
true_dev, false_dev, count_true_dev, evt = partition(a_dev, "ary[i] > myval", [("myval", crit)])
count_true_dev = count_true_dev.get()
assert (true_dev.get()[:count_true_dev] == true_host).all()
assert (false_dev.get()[:n-count_true_dev] == false_host).all()
@pytools.test.mark_test.opencl
def test_unique(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
for n in scan_test_counts:
a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
a = a_dev.get()
a = np.sort(a)
a_dev = cl_array.to_device(queue, a)
a_unique_host = np.unique(a)
from pyopencl.algorithm import unique
a_unique_dev, count_unique_dev, evt = unique(a_dev)
count_unique_dev = count_unique_dev.get()
assert (a_unique_dev.get()[:count_unique_dev] == a_unique_host).all()
from gc import collect
collect()
@pytools.test.mark_test.opencl
def test_index_preservation(ctx_factory):
from pytest import importorskip
importorskip("mako")
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.scan import GenericScanKernel, GenericDebugScanKernel
classes = [GenericScanKernel]
dev = context.devices[0]
if dev.type == cl.device_type.CPU:
classes.append(GenericDebugScanKernel)
for cls in classes:
for n in scan_test_counts:
knl = cls(
context, np.int32,
arguments="__global int *out",
input_expr="i",
scan_expr="b", neutral="0",
output_statement="""
out[i] = item;
""")
out = cl_array.empty(queue, n, dtype=np.int32)
knl(out)
assert (out.get() == np.arange(n)).all()
from gc import collect
collect()
@pytools.test.mark_test.opencl
def test_segmented_scan(ctx_factory):
from pytest import importorskip
importorskip("mako")
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.tools import dtype_to_ctype
dtype = np.int32
ctype = dtype_to_ctype(dtype)
#for is_exclusive in [False, True]:
for is_exclusive in [True, False]:
if is_exclusive:
output_statement = "out[i] = prev_item"
else:
output_statement = "out[i] = item"
from pyopencl.scan import GenericScanKernel
knl = GenericScanKernel(context, dtype,
arguments="__global %s *ary, __global char *segflags, __global %s *out"
% (ctype, ctype),
input_expr="ary[i]",
scan_expr="across_seg_boundary ? b : (a+b)", neutral="0",
is_segment_start_expr="segflags[i]",
output_statement=output_statement,
options=[])
np.set_printoptions(threshold=2000)
from random import randrange
from pyopencl.clrandom import rand as clrand
for n in scan_test_counts:
a_dev = clrand(queue, (n,), dtype=dtype, a=0, b=10)
a = a_dev.get()
if 10 <= n < 20:
seg_boundaries_values = [
[0, 9],
[0, 3],
[4, 6],
]
else:
seg_boundaries_values = []
for i in range(10):
seg_boundary_count = max(2, min(100, randrange(0, int(0.4*n))))
seg_boundaries = [randrange(n) for i in range(seg_boundary_count)]
if n >= 1029:
seg_boundaries.insert(0, 1028)
seg_boundaries.sort()
seg_boundaries_values.append(seg_boundaries)
for seg_boundaries in seg_boundaries_values:
#print "BOUNDARIES", seg_boundaries
#print a
seg_boundary_flags = np.zeros(n, dtype=np.uint8)
seg_boundary_flags[seg_boundaries] = 1
seg_boundary_flags_dev = cl_array.to_device(queue, seg_boundary_flags)
seg_boundaries.insert(0, 0)
result_host = a.copy()
for i, seg_start in enumerate(seg_boundaries):
if i+1 < len(seg_boundaries):
seg_end = seg_boundaries[i+1]
else:
seg_end = None
if is_exclusive:
result_host[seg_start+1:seg_end] = np.cumsum(
a[seg_start:seg_end][:-1])
result_host[seg_start] = 0
else:
result_host[seg_start:seg_end] = np.cumsum(
a[seg_start:seg_end])
#print "REF", result_host
result_dev = cl_array.empty_like(a_dev)
knl(a_dev, seg_boundary_flags_dev, result_dev)
#print "RES", result_dev
is_correct = (result_dev.get() == result_host).all()
if not is_correct:
diff = result_dev.get() - result_host
print("RES-REF", diff)
print("ERRWHERE", np.where(diff))
print(n, list(seg_boundaries))
assert is_correct
from gc import collect
collect()
print("%d excl:%s done" % (n, is_exclusive))
@pytools.test.mark_test.opencl
def test_sort(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
dtype = np.int32
from pyopencl.algorithm import RadixSort
sort = RadixSort(context, "int *ary", key_expr="ary[i]",
sort_arg_names=["ary"])
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from time import time
Andreas Klöckner
committed
# intermediate arrays for largest size cause out-of-memory on low-end GPUs
for n in scan_test_counts[:-1]:
print(n)
print(" rng")
a_dev = rng.uniform(queue, (n,), dtype=dtype, a=0, b=2**16)
a = a_dev.get()
dev_start = time()
print(" device")
(a_dev_sorted,), evt = sort(a_dev, key_bits=16)
queue.finish()
dev_end = time()
print(" numpy")
a_sorted = np.sort(a)
numpy_end = time()
numpy_elapsed = numpy_end-dev_end
dev_elapsed = dev_end-dev_start
print (" dev: %.2f MKeys/s numpy: %.2f MKeys/s ratio: %.2fx" % (
1e-6*n/dev_elapsed, 1e-6*n/numpy_elapsed, numpy_elapsed/dev_elapsed))
assert (a_dev_sorted.get() == a_sorted).all()
@pytools.test.mark_test.opencl
def test_list_builder(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.algorithm import ListOfListsBuilder
builder = ListOfListsBuilder(context, [("mylist", np.int32)], """//CL//
void generate(LIST_ARG_DECL USER_ARG_DECL index_type i)
{
int count = i % 4;
for (int j = 0; j < count; ++j)
{
APPEND_mylist(count);
}
}
""", arg_decls=[])
result, evt = builder(queue, 2000)
inf = result["mylist"]
assert inf.count == 3000
assert (inf.lists.get()[-6:] == [1, 2, 2, 3, 3, 3]).all()
@pytools.test.mark_test.opencl
def test_key_value_sorter(ctx_factory):
from pytest import importorskip
importorskip("mako")
context = ctx_factory()
queue = cl.CommandQueue(context)
n = 10**5
nkeys = 2000
from pyopencl.clrandom import rand as clrand
keys = clrand(queue, n, np.int32, b=nkeys)
values = clrand(queue, n, np.int32, b=n).astype(np.int64)
assert np.max(keys.get()) < nkeys
from pyopencl.algorithm import KeyValueSorter
kvs = KeyValueSorter(context)
starts, lists, evt = kvs(queue, keys, values, nkeys, starts_dtype=np.int32)
starts = starts.get()
lists = lists.get()
mydict = dict()
for k, v in zip(keys.get(), values.get()):
mydict.setdefault(k, []).append(v)
start, end = starts[i:i+2]
assert sorted(mydict[i]) == sorted(lists[start:end])
# }}}
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: filetype=pyopencl:fdm=marker