Skip to content
Snippets Groups Projects
test_algorithm.py 24.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • #! /usr/bin/env python
    
    __copyright__ = "Copyright (C) 2013 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    import numpy as np
    import numpy.linalg as la
    import sys
    import pytools.test
    from pytools import memoize
    from test_array import general_clrand
    
    
    import pyopencl as cl
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    import pyopencl.array as cl_array # noqa
    
    from pyopencl.tools import pytest_generate_tests_for_pyopencl \
            as pytest_generate_tests
    from pyopencl.characterize import has_double_support
    
    
    
    
    
    
    # {{{ elementwise
    
    @pytools.test.mark_test.opencl
    def test_elwise_kernel(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        a_gpu = clrand(queue, (50,), np.float32)
        b_gpu = clrand(queue, (50,), np.float32)
    
        from pyopencl.elementwise import ElementwiseKernel
        lin_comb = ElementwiseKernel(context,
                "float a, float *x, float b, float *y, float *z",
                "z[i] = a*x[i] + b*y[i]",
                "linear_combination")
    
        c_gpu = cl_array.empty_like(a_gpu)
        lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
    
        assert la.norm((c_gpu - (5 * a_gpu + 6 * b_gpu)).get()) < 1e-5
    
    
    @pytools.test.mark_test.opencl
    def test_elwise_kernel_with_options(ctx_factory):
        from pyopencl.clrandom import rand as clrand
        from pyopencl.elementwise import ElementwiseKernel
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        in_gpu = clrand(queue, (50,), np.float32)
    
        options = ['-D', 'ADD_ONE']
        add_one = ElementwiseKernel(
            context,
            "float* out, const float *in",
            """
            out[i] = in[i]
            #ifdef ADD_ONE
                +1
            #endif
            ;
            """,
            options=options,
            )
    
        out_gpu = cl_array.empty_like(in_gpu)
        add_one(out_gpu, in_gpu)
    
        gt = in_gpu.get() + 1
        gv = out_gpu.get()
        assert la.norm(gv - gt) < 1e-5
    
    
    @pytools.test.mark_test.opencl
    def test_ranged_elwise_kernel(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.elementwise import ElementwiseKernel
        set_to_seven = ElementwiseKernel(context,
                "float *z", "z[i] = 7", "set_to_seven")
    
        for i, slc in enumerate([
                slice(5, 20000),
                slice(5, 20000, 17),
                slice(3000, 5, -1),
                slice(1000, -1),
                ]):
    
            a_gpu = cl_array.zeros(queue, (50000,), dtype=np.float32)
            a_cpu = np.zeros(a_gpu.shape, a_gpu.dtype)
    
            a_cpu[slc] = 7
            set_to_seven(a_gpu, slice=slc)
    
            assert (a_cpu == a_gpu.get()).all()
    
    @pytools.test.mark_test.opencl
    def test_take(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        idx = cl_array.arange(queue, 0, 200000, 2, dtype=np.uint32)
        a = cl_array.arange(queue, 0, 600000, 3, dtype=np.float32)
        result = cl_array.take(a, idx)
        assert ((3 * idx).get() == result.get()).all()
    
    
    @pytools.test.mark_test.opencl
    def test_arange(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 5000
        a = cl_array.arange(queue, n, dtype=np.float32)
        assert (np.arange(n, dtype=np.float32) == a.get()).all()
    
    
    @pytools.test.mark_test.opencl
    def test_reverse(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 5000
        a = np.arange(n).astype(np.float32)
        a_gpu = cl_array.to_device(queue, a)
    
        a_gpu = a_gpu.reverse()
    
        assert (a[::-1] == a_gpu.get()).all()
    
    @pytools.test.mark_test.opencl
    def test_if_positive(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        l = 20000
        a_gpu = clrand(queue, (l,), np.float32)
        b_gpu = clrand(queue, (l,), np.float32)
        a = a_gpu.get()
        b = b_gpu.get()
    
        max_a_b_gpu = cl_array.maximum(a_gpu, b_gpu)
        min_a_b_gpu = cl_array.minimum(a_gpu, b_gpu)
    
        print(max_a_b_gpu)
        print(np.maximum(a, b))
    
        assert la.norm(max_a_b_gpu.get() - np.maximum(a, b)) == 0
        assert la.norm(min_a_b_gpu.get() - np.minimum(a, b)) == 0
    
    
    @pytools.test.mark_test.opencl
    def test_take_put(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        for n in [5, 17, 333]:
            one_field_size = 8
            buf_gpu = cl_array.zeros(queue,
                    n * one_field_size, dtype=np.float32)
            dest_indices = cl_array.to_device(queue,
                    np.array([0, 1, 2,  3, 32, 33, 34, 35], dtype=np.uint32))
            read_map = cl_array.to_device(queue,
                    np.array([7, 6, 5, 4, 3, 2, 1, 0], dtype=np.uint32))
    
            cl_array.multi_take_put(
                    arrays=[buf_gpu for i in range(n)],
                    dest_indices=dest_indices,
                    src_indices=read_map,
                    src_offsets=[i * one_field_size for i in range(n)],
                    dest_shape=(96,))
    
    
    @pytools.test.mark_test.opencl
    def test_astype(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        if not has_double_support(context.devices[0]):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from pytest import skip
    
            skip("double precision not supported on %s" % context.devices[0])
    
        a_gpu = clrand(queue, (2000,), dtype=np.float32)
    
        a = a_gpu.get().astype(np.float64)
        a2 = a_gpu.astype(np.float64).get()
    
        assert a2.dtype == np.float64
        assert la.norm(a - a2) == 0, (a, a2)
    
        a_gpu = clrand(queue, (2000,), dtype=np.float64)
    
        a = a_gpu.get().astype(np.float32)
        a2 = a_gpu.astype(np.float32).get()
    
        assert a2.dtype == np.float32
        assert la.norm(a - a2) / la.norm(a) < 1e-7
    
    # }}}
    
    # {{{ reduction
    
    @pytools.test.mark_test.opencl
    def test_sum(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 200000
        for dtype in [np.float32, np.complex64]:
            a_gpu = general_clrand(queue, (n,), dtype)
    
            a = a_gpu.get()
    
            sum_a = np.sum(a)
            sum_a_gpu = cl_array.sum(a_gpu).get()
    
            assert abs(sum_a_gpu - sum_a) / abs(sum_a) < 1e-4
    
    
    @pytools.test.mark_test.opencl
    def test_minmax(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        if has_double_support(context.devices[0]):
            dtypes = [np.float64, np.float32, np.int32]
        else:
            dtypes = [np.float32, np.int32]
    
        for what in ["min", "max"]:
            for dtype in dtypes:
                a_gpu = clrand(queue, (200000,), dtype)
                a = a_gpu.get()
    
                op_a = getattr(np, what)(a)
                op_a_gpu = getattr(cl_array, what)(a_gpu).get()
    
                assert op_a_gpu == op_a, (op_a_gpu, op_a, dtype, what)
    
    
    @pytools.test.mark_test.opencl
    def test_subset_minmax(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        l_a = 200000
        gran = 5
        l_m = l_a - l_a // gran + 1
    
        if has_double_support(context.devices[0]):
            dtypes = [np.float64, np.float32, np.int32]
        else:
            dtypes = [np.float32, np.int32]
    
        for dtype in dtypes:
            a_gpu = clrand(queue, (l_a,), dtype)
            a = a_gpu.get()
    
            meaningful_indices_gpu = cl_array.zeros(
                    queue, l_m, dtype=np.int32)
            meaningful_indices = meaningful_indices_gpu.get()
            j = 0
            for i in range(len(meaningful_indices)):
                meaningful_indices[i] = j
                j = j + 1
                if j % gran == 0:
                    j = j + 1
    
            meaningful_indices_gpu = cl_array.to_device(
                    queue, meaningful_indices)
            b = a[meaningful_indices]
    
            min_a = np.min(b)
            min_a_gpu = cl_array.subset_min(meaningful_indices_gpu, a_gpu).get()
    
            assert min_a_gpu == min_a
    
    
    @pytools.test.mark_test.opencl
    def test_dot(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        dtypes = [np.float32, np.complex64]
        if has_double_support(context.devices[0]):
            dtypes.extend([np.float64, np.complex128])
    
        for a_dtype in dtypes:
            for b_dtype in dtypes:
                print(a_dtype, b_dtype)
                a_gpu = general_clrand(queue, (200000,), a_dtype)
                a = a_gpu.get()
                b_gpu = general_clrand(queue, (200000,), b_dtype)
                b = b_gpu.get()
    
                dot_ab = np.dot(a, b)
                dot_ab_gpu = cl_array.dot(a_gpu, b_gpu).get()
    
                assert abs(dot_ab_gpu - dot_ab) / abs(dot_ab) < 1e-4
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                vdot_ab = np.vdot(a, b)
                vdot_ab_gpu = cl_array.vdot(a_gpu, b_gpu).get()
    
                assert abs(vdot_ab_gpu - vdot_ab) / abs(vdot_ab) < 1e-4
    
    
    @memoize
    def make_mmc_dtype(device):
        dtype = np.dtype([
            ("cur_min", np.int32),
            ("cur_max", np.int32),
            ("pad", np.int32),
            ])
    
        name = "minmax_collector"
        from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
    
        dtype, c_decl = match_dtype_to_c_struct(device, name, dtype)
        dtype = get_or_register_dtype(name, dtype)
    
        return dtype, c_decl
    
    @pytools.test.mark_test.opencl
    def test_struct_reduce(ctx_factory):
    
        pytest.importorskip("mako")
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
    
        dev, = context.devices
        if (dev.vendor == "NVIDIA" and dev.platform.vendor == "Apple"
                and dev.driver_version == "8.12.47 310.40.00.05f01"):
            pytest.skip("causes a compiler hang on Apple/Nv GPU")
    
    
        mmc_dtype, mmc_c_decl = make_mmc_dtype(context.devices[0])
    
        preamble = mmc_c_decl + r"""//CL//
    
        minmax_collector mmc_neutral()
        {
            // FIXME: needs infinity literal in real use, ok here
            minmax_collector result;
            result.cur_min = 1<<30;
            result.cur_max = -(1<<30);
            return result;
        }
    
        minmax_collector mmc_from_scalar(float x)
        {
            minmax_collector result;
            result.cur_min = x;
            result.cur_max = x;
            return result;
        }
    
        minmax_collector agg_mmc(minmax_collector a, minmax_collector b)
        {
            minmax_collector result = a;
            if (b.cur_min < result.cur_min)
                result.cur_min = b.cur_min;
            if (b.cur_max > result.cur_max)
                result.cur_max = b.cur_max;
            return result;
        }
    
        """
    
        from pyopencl.clrandom import rand as clrand
        a_gpu = clrand(queue, (20000,), dtype=np.int32, a=0, b=10**6)
        a = a_gpu.get()
    
        from pyopencl.reduction import ReductionKernel
        red = ReductionKernel(context, mmc_dtype,
                neutral="mmc_neutral()",
                reduce_expr="agg_mmc(a, b)", map_expr="mmc_from_scalar(x[i])",
                arguments="__global int *x", preamble=preamble)
    
        minmax = red(a_gpu).get()
        #print minmax["cur_min"], minmax["cur_max"]
        #print np.min(a), np.max(a)
    
        assert abs(minmax["cur_min"] - np.min(a)) < 1e-5
        assert abs(minmax["cur_max"] - np.max(a)) < 1e-5
    
    # }}}
    
    # {{{ scan-related
    
    def summarize_error(obtained, desired, orig, thresh=1e-5):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        err = obtained - desired
        ok_count = 0
        bad_count = 0
    
        bad_limit = 200
    
        def summarize_counts():
            if ok_count:
                entries.append("<%d ok>" % ok_count)
            if bad_count >= bad_limit:
                entries.append("<%d more bad>" % (bad_count-bad_limit))
    
        entries = []
        for i, val in enumerate(err):
            if abs(val) > thresh:
                if ok_count:
                    summarize_counts()
                    ok_count = 0
    
                bad_count += 1
    
                if bad_count < bad_limit:
                    entries.append("%r (want: %r, got: %r, orig: %r)" % (obtained[i], desired[i],
                        obtained[i], orig[i]))
            else:
                if bad_count:
                    summarize_counts()
                    bad_count = 0
    
                ok_count += 1
    
    
        summarize_counts()
    
        return " ".join(entries)
    
    scan_test_counts = [
        10,
        2 ** 8 - 1,
        2 ** 8,
        2 ** 8 + 1,
        2 ** 10 - 5,
        2 ** 10,
        2 ** 10 + 5,
        2 ** 12 - 5,
        2 ** 12,
        2 ** 12 + 5,
        2 ** 20 - 2 ** 18,
        2 ** 20 - 2 ** 18 + 5,
        2 ** 20 + 1,
        2 ** 20,
        2 ** 23 + 3,
    
        # larger sizes cause out of memory on low-end AMD APUs
    
        ]
    
    @pytools.test.mark_test.opencl
    def test_scan(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.scan import InclusiveScanKernel, ExclusiveScanKernel
    
        dtype = np.int32
        for cls in [
                InclusiveScanKernel,
                ExclusiveScanKernel
                ]:
            knl = cls(context, dtype, "a+b", "0")
    
            for n in scan_test_counts:
                host_data = np.random.randint(0, 10, n).astype(dtype)
                dev_data = cl_array.to_device(queue, host_data)
    
                assert (host_data == dev_data.get()).all() # /!\ fails on Nv GT2?? for some drivers
    
                knl(dev_data)
    
                desired_result = np.cumsum(host_data, axis=0)
                if cls is ExclusiveScanKernel:
                    desired_result -= host_data
    
                is_ok = (dev_data.get() == desired_result).all()
                if 1 and not is_ok:
                    print("something went wrong, summarizing error...")
                    print(summarize_error(dev_data.get(), desired_result, host_data))
    
                print("n:%d %s worked:%s" % (n, cls, is_ok))
                assert is_ok
                from gc import collect
                collect()
    
    @pytools.test.mark_test.opencl
    def test_copy_if(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
        for n in scan_test_counts:
            a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
            a = a_dev.get()
    
            from pyopencl.algorithm import copy_if
    
            crit = a_dev.dtype.type(300)
            selected = a[a>crit]
    
            selected_dev, count_dev, evt = copy_if(a_dev, "ary[i] > myval", [("myval", crit)])
    
    
            assert (selected_dev.get()[:count_dev.get()] == selected).all()
            from gc import collect
            collect()
    
    @pytools.test.mark_test.opencl
    def test_partition(ctx_factory):
    
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
        for n in scan_test_counts:
    
            print("part", n)
    
            a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
            a = a_dev.get()
    
            crit = a_dev.dtype.type(300)
            true_host = a[a>crit]
            false_host = a[a<=crit]
    
            from pyopencl.algorithm import partition
    
            true_dev, false_dev, count_true_dev, evt = partition(a_dev, "ary[i] > myval", [("myval", crit)])
    
    
            count_true_dev = count_true_dev.get()
    
            assert (true_dev.get()[:count_true_dev] == true_host).all()
            assert (false_dev.get()[:n-count_true_dev] == false_host).all()
    
    @pytools.test.mark_test.opencl
    def test_unique(ctx_factory):
    
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
        for n in scan_test_counts:
            a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
            a = a_dev.get()
            a = np.sort(a)
            a_dev = cl_array.to_device(queue, a)
    
            a_unique_host = np.unique(a)
    
            from pyopencl.algorithm import unique
    
            a_unique_dev, count_unique_dev, evt = unique(a_dev)
    
    
            count_unique_dev = count_unique_dev.get()
    
            assert (a_unique_dev.get()[:count_unique_dev] == a_unique_host).all()
            from gc import collect
            collect()
    
    @pytools.test.mark_test.opencl
    def test_index_preservation(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.scan import GenericScanKernel, GenericDebugScanKernel
        classes = [GenericScanKernel]
    
        dev = context.devices[0]
        if dev.type == cl.device_type.CPU:
            classes.append(GenericDebugScanKernel)
    
        for cls in classes:
            for n in scan_test_counts:
                knl = cls(
                        context, np.int32,
                        arguments="__global int *out",
                        input_expr="i",
                        scan_expr="b", neutral="0",
                        output_statement="""
                            out[i] = item;
                            """)
    
                out = cl_array.empty(queue, n, dtype=np.int32)
                knl(out)
    
                assert (out.get() == np.arange(n)).all()
                from gc import collect
                collect()
    
    @pytools.test.mark_test.opencl
    def test_segmented_scan(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.tools import dtype_to_ctype
        dtype = np.int32
        ctype = dtype_to_ctype(dtype)
    
        #for is_exclusive in [False, True]:
        for is_exclusive in [True, False]:
            if is_exclusive:
                output_statement = "out[i] = prev_item"
            else:
                output_statement = "out[i] = item"
    
            from pyopencl.scan import GenericScanKernel
            knl = GenericScanKernel(context, dtype,
                    arguments="__global %s *ary, __global char *segflags, __global %s *out"
                        % (ctype, ctype),
                    input_expr="ary[i]",
                    scan_expr="across_seg_boundary ? b : (a+b)", neutral="0",
                    is_segment_start_expr="segflags[i]",
                    output_statement=output_statement,
                    options=[])
    
            np.set_printoptions(threshold=2000)
            from random import randrange
            from pyopencl.clrandom import rand as clrand
            for n in scan_test_counts:
                a_dev = clrand(queue, (n,), dtype=dtype, a=0, b=10)
                a = a_dev.get()
    
                if 10 <= n < 20:
                    seg_boundaries_values = [
                            [0, 9],
                            [0, 3],
                            [4, 6],
                            ]
                else:
                    seg_boundaries_values = []
                    for i in range(10):
                        seg_boundary_count = max(2, min(100, randrange(0, int(0.4*n))))
                        seg_boundaries = [randrange(n) for i in range(seg_boundary_count)]
                        if n >= 1029:
                            seg_boundaries.insert(0, 1028)
                        seg_boundaries.sort()
                        seg_boundaries_values.append(seg_boundaries)
    
                for seg_boundaries in seg_boundaries_values:
                    #print "BOUNDARIES", seg_boundaries
                    #print a
    
                    seg_boundary_flags = np.zeros(n, dtype=np.uint8)
                    seg_boundary_flags[seg_boundaries] = 1
                    seg_boundary_flags_dev = cl_array.to_device(queue, seg_boundary_flags)
    
                    seg_boundaries.insert(0, 0)
    
                    result_host = a.copy()
                    for i, seg_start in enumerate(seg_boundaries):
                        if i+1 < len(seg_boundaries):
                            seg_end = seg_boundaries[i+1]
                        else:
                            seg_end = None
    
                        if is_exclusive:
                            result_host[seg_start+1:seg_end] = np.cumsum(
                                    a[seg_start:seg_end][:-1])
                            result_host[seg_start] = 0
                        else:
                            result_host[seg_start:seg_end] = np.cumsum(
                                    a[seg_start:seg_end])
    
                    #print "REF", result_host
    
                    result_dev = cl_array.empty_like(a_dev)
                    knl(a_dev, seg_boundary_flags_dev, result_dev)
    
                    #print "RES", result_dev
                    is_correct = (result_dev.get() == result_host).all()
                    if not is_correct:
                        diff = result_dev.get() - result_host
                        print("RES-REF", diff)
                        print("ERRWHERE", np.where(diff))
                        print(n, list(seg_boundaries))
    
                    assert is_correct
                    from gc import collect
                    collect()
    
                print("%d excl:%s done" % (n, is_exclusive))
    
    
    @pytools.test.mark_test.opencl
    def test_sort(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        dtype = np.int32
    
        from pyopencl.algorithm import RadixSort
        sort = RadixSort(context, "int *ary", key_expr="ary[i]",
                sort_arg_names=["ary"])
    
        from pyopencl.clrandom import RanluxGenerator
        rng = RanluxGenerator(queue, seed=15)
    
        from time import time
    
    
        # intermediate arrays for largest size cause out-of-memory on low-end GPUs
        for n in scan_test_counts[:-1]:
    
            print(n)
    
            print("  rng")
            a_dev = rng.uniform(queue, (n,), dtype=dtype, a=0, b=2**16)
            a = a_dev.get()
    
            dev_start = time()
            print("  device")
    
            (a_dev_sorted,), evt = sort(a_dev, key_bits=16)
    
            queue.finish()
            dev_end = time()
            print("  numpy")
            a_sorted = np.sort(a)
            numpy_end = time()
    
            numpy_elapsed = numpy_end-dev_end
            dev_elapsed = dev_end-dev_start
            print ("  dev: %.2f MKeys/s numpy: %.2f MKeys/s ratio: %.2fx" % (
                    1e-6*n/dev_elapsed, 1e-6*n/numpy_elapsed, numpy_elapsed/dev_elapsed))
            assert (a_dev_sorted.get() == a_sorted).all()
    
    @pytools.test.mark_test.opencl
    def test_list_builder(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.algorithm import ListOfListsBuilder
        builder = ListOfListsBuilder(context, [("mylist", np.int32)], """//CL//
                void generate(LIST_ARG_DECL USER_ARG_DECL index_type i)
                {
                    int count = i % 4;
                    for (int j = 0; j < count; ++j)
                    {
                        APPEND_mylist(count);
                    }
                }
                """, arg_decls=[])
    
    
        result, evt = builder(queue, 2000)
    
    
        inf = result["mylist"]
        assert inf.count == 3000
        assert (inf.lists.get()[-6:] == [1, 2, 2, 3, 3, 3]).all()
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    @pytools.test.mark_test.opencl
    def test_key_value_sorter(ctx_factory):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from pytest import importorskip
        importorskip("mako")
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 10**5
        nkeys = 2000
        from pyopencl.clrandom import rand as clrand
        keys = clrand(queue, n, np.int32, b=nkeys)
        values = clrand(queue, n, np.int32, b=n).astype(np.int64)
    
        assert np.max(keys.get()) < nkeys
    
        from pyopencl.algorithm import KeyValueSorter
        kvs = KeyValueSorter(context)
    
        starts, lists, evt = kvs(queue, keys, values, nkeys, starts_dtype=np.int32)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    
        starts = starts.get()
        lists = lists.get()
    
        mydict = dict()
        for k, v in zip(keys.get(), values.get()):
            mydict.setdefault(k, []).append(v)
    
    
        for i in range(nkeys):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            start, end = starts[i:i+2]
            assert sorted(mydict[i]) == sorted(lists[start:end])
    
    
    # }}}
    
    
    
    
    if __name__ == "__main__":
        import sys
        if len(sys.argv) > 1:
            exec(sys.argv[1])
        else:
    
            from py.test.cmdline import main
    
            main([__file__])
    
    # vim: filetype=pyopencl:fdm=marker