Skip to content
Snippets Groups Projects
test_algorithm.py 23.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    #! /usr/bin/env python
    
    __copyright__ = "Copyright (C) 2013 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    import numpy as np
    import numpy.linalg as la
    import sys
    import pytools.test
    from pytools import memoize
    from test_array import general_clrand
    
    
    def have_cl():
        try:
            import pyopencl
            return True
        except:
            return False
    
    if have_cl():
        import pyopencl as cl
        import pyopencl.array as cl_array
        import pyopencl.tools as cl_tools
        from pyopencl.tools import pytest_generate_tests_for_pyopencl \
                as pytest_generate_tests
        from pyopencl.characterize import has_double_support
    
    
    
    
    
    # {{{ elementwise
    
    @pytools.test.mark_test.opencl
    def test_elwise_kernel(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        a_gpu = clrand(queue, (50,), np.float32)
        b_gpu = clrand(queue, (50,), np.float32)
    
        from pyopencl.elementwise import ElementwiseKernel
        lin_comb = ElementwiseKernel(context,
                "float a, float *x, float b, float *y, float *z",
                "z[i] = a*x[i] + b*y[i]",
                "linear_combination")
    
        c_gpu = cl_array.empty_like(a_gpu)
        lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
    
        assert la.norm((c_gpu - (5 * a_gpu + 6 * b_gpu)).get()) < 1e-5
    
    
    @pytools.test.mark_test.opencl
    def test_elwise_kernel_with_options(ctx_factory):
        from pyopencl.clrandom import rand as clrand
        from pyopencl.elementwise import ElementwiseKernel
    
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        in_gpu = clrand(queue, (50,), np.float32)
    
        options = ['-D', 'ADD_ONE']
        add_one = ElementwiseKernel(
            context,
            "float* out, const float *in",
            """
            out[i] = in[i]
            #ifdef ADD_ONE
                +1
            #endif
            ;
            """,
            options=options,
            )
    
        out_gpu = cl_array.empty_like(in_gpu)
        add_one(out_gpu, in_gpu)
    
        gt = in_gpu.get() + 1
        gv = out_gpu.get()
        assert la.norm(gv - gt) < 1e-5
    
    
    @pytools.test.mark_test.opencl
    def test_ranged_elwise_kernel(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.elementwise import ElementwiseKernel
        set_to_seven = ElementwiseKernel(context,
                "float *z", "z[i] = 7", "set_to_seven")
    
        for i, slc in enumerate([
                slice(5, 20000),
                slice(5, 20000, 17),
                slice(3000, 5, -1),
                slice(1000, -1),
                ]):
    
            a_gpu = cl_array.zeros(queue, (50000,), dtype=np.float32)
            a_cpu = np.zeros(a_gpu.shape, a_gpu.dtype)
    
            a_cpu[slc] = 7
            set_to_seven(a_gpu, slice=slc)
    
            assert (a_cpu == a_gpu.get()).all()
    
    @pytools.test.mark_test.opencl
    def test_take(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        idx = cl_array.arange(queue, 0, 200000, 2, dtype=np.uint32)
        a = cl_array.arange(queue, 0, 600000, 3, dtype=np.float32)
        result = cl_array.take(a, idx)
        assert ((3 * idx).get() == result.get()).all()
    
    
    @pytools.test.mark_test.opencl
    def test_arange(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 5000
        a = cl_array.arange(queue, n, dtype=np.float32)
        assert (np.arange(n, dtype=np.float32) == a.get()).all()
    
    
    @pytools.test.mark_test.opencl
    def test_reverse(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 5000
        a = np.arange(n).astype(np.float32)
        a_gpu = cl_array.to_device(queue, a)
    
        a_gpu = a_gpu.reverse()
    
        assert (a[::-1] == a_gpu.get()).all()
    
    @pytools.test.mark_test.opencl
    def test_if_positive(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        l = 20000
        a_gpu = clrand(queue, (l,), np.float32)
        b_gpu = clrand(queue, (l,), np.float32)
        a = a_gpu.get()
        b = b_gpu.get()
    
        max_a_b_gpu = cl_array.maximum(a_gpu, b_gpu)
        min_a_b_gpu = cl_array.minimum(a_gpu, b_gpu)
    
        print(max_a_b_gpu)
        print(np.maximum(a, b))
    
        assert la.norm(max_a_b_gpu.get() - np.maximum(a, b)) == 0
        assert la.norm(min_a_b_gpu.get() - np.minimum(a, b)) == 0
    
    
    @pytools.test.mark_test.opencl
    def test_take_put(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        for n in [5, 17, 333]:
            one_field_size = 8
            buf_gpu = cl_array.zeros(queue,
                    n * one_field_size, dtype=np.float32)
            dest_indices = cl_array.to_device(queue,
                    np.array([0, 1, 2,  3, 32, 33, 34, 35], dtype=np.uint32))
            read_map = cl_array.to_device(queue,
                    np.array([7, 6, 5, 4, 3, 2, 1, 0], dtype=np.uint32))
    
            cl_array.multi_take_put(
                    arrays=[buf_gpu for i in range(n)],
                    dest_indices=dest_indices,
                    src_indices=read_map,
                    src_offsets=[i * one_field_size for i in range(n)],
                    dest_shape=(96,))
    
    
    @pytools.test.mark_test.opencl
    def test_astype(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        if not has_double_support(context.devices[0]):
            from py.test import skip
            skip("double precision not supported on %s" % context.devices[0])
    
        a_gpu = clrand(queue, (2000,), dtype=np.float32)
    
        a = a_gpu.get().astype(np.float64)
        a2 = a_gpu.astype(np.float64).get()
    
        assert a2.dtype == np.float64
        assert la.norm(a - a2) == 0, (a, a2)
    
        a_gpu = clrand(queue, (2000,), dtype=np.float64)
    
        a = a_gpu.get().astype(np.float32)
        a2 = a_gpu.astype(np.float32).get()
    
        assert a2.dtype == np.float32
        assert la.norm(a - a2) / la.norm(a) < 1e-7
    
    # }}}
    
    # {{{ reduction
    
    @pytools.test.mark_test.opencl
    def test_sum(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 200000
        for dtype in [np.float32, np.complex64]:
            a_gpu = general_clrand(queue, (n,), dtype)
    
            a = a_gpu.get()
    
            sum_a = np.sum(a)
            sum_a_gpu = cl_array.sum(a_gpu).get()
    
            assert abs(sum_a_gpu - sum_a) / abs(sum_a) < 1e-4
    
    
    @pytools.test.mark_test.opencl
    def test_minmax(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        if has_double_support(context.devices[0]):
            dtypes = [np.float64, np.float32, np.int32]
        else:
            dtypes = [np.float32, np.int32]
    
        for what in ["min", "max"]:
            for dtype in dtypes:
                a_gpu = clrand(queue, (200000,), dtype)
                a = a_gpu.get()
    
                op_a = getattr(np, what)(a)
                op_a_gpu = getattr(cl_array, what)(a_gpu).get()
    
                assert op_a_gpu == op_a, (op_a_gpu, op_a, dtype, what)
    
    
    @pytools.test.mark_test.opencl
    def test_subset_minmax(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
    
        l_a = 200000
        gran = 5
        l_m = l_a - l_a // gran + 1
    
        if has_double_support(context.devices[0]):
            dtypes = [np.float64, np.float32, np.int32]
        else:
            dtypes = [np.float32, np.int32]
    
        for dtype in dtypes:
            a_gpu = clrand(queue, (l_a,), dtype)
            a = a_gpu.get()
    
            meaningful_indices_gpu = cl_array.zeros(
                    queue, l_m, dtype=np.int32)
            meaningful_indices = meaningful_indices_gpu.get()
            j = 0
            for i in range(len(meaningful_indices)):
                meaningful_indices[i] = j
                j = j + 1
                if j % gran == 0:
                    j = j + 1
    
            meaningful_indices_gpu = cl_array.to_device(
                    queue, meaningful_indices)
            b = a[meaningful_indices]
    
            min_a = np.min(b)
            min_a_gpu = cl_array.subset_min(meaningful_indices_gpu, a_gpu).get()
    
            assert min_a_gpu == min_a
    
    
    @pytools.test.mark_test.opencl
    def test_dot(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        dtypes = [np.float32, np.complex64]
        if has_double_support(context.devices[0]):
            dtypes.extend([np.float64, np.complex128])
    
        for a_dtype in dtypes:
            for b_dtype in dtypes:
                print(a_dtype, b_dtype)
                a_gpu = general_clrand(queue, (200000,), a_dtype)
                a = a_gpu.get()
                b_gpu = general_clrand(queue, (200000,), b_dtype)
                b = b_gpu.get()
    
                dot_ab = np.dot(a, b)
    
                dot_ab_gpu = cl_array.dot(a_gpu, b_gpu).get()
    
                assert abs(dot_ab_gpu - dot_ab) / abs(dot_ab) < 1e-4
    
    @memoize
    def make_mmc_dtype(device):
        dtype = np.dtype([
            ("cur_min", np.int32),
            ("cur_max", np.int32),
            ("pad", np.int32),
            ])
    
        name = "minmax_collector"
        from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
    
        dtype, c_decl = match_dtype_to_c_struct(device, name, dtype)
        dtype = get_or_register_dtype(name, dtype)
    
        return dtype, c_decl
    
    @pytools.test.mark_test.opencl
    def test_struct_reduce(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        mmc_dtype, mmc_c_decl = make_mmc_dtype(context.devices[0])
    
        preamble = mmc_c_decl + r"""//CL//
    
        minmax_collector mmc_neutral()
        {
            // FIXME: needs infinity literal in real use, ok here
            minmax_collector result;
            result.cur_min = 1<<30;
            result.cur_max = -(1<<30);
            return result;
        }
    
        minmax_collector mmc_from_scalar(float x)
        {
            minmax_collector result;
            result.cur_min = x;
            result.cur_max = x;
            return result;
        }
    
        minmax_collector agg_mmc(minmax_collector a, minmax_collector b)
        {
            minmax_collector result = a;
            if (b.cur_min < result.cur_min)
                result.cur_min = b.cur_min;
            if (b.cur_max > result.cur_max)
                result.cur_max = b.cur_max;
            return result;
        }
    
        """
    
        from pyopencl.clrandom import rand as clrand
        a_gpu = clrand(queue, (20000,), dtype=np.int32, a=0, b=10**6)
        a = a_gpu.get()
    
        from pyopencl.reduction import ReductionKernel
        red = ReductionKernel(context, mmc_dtype,
                neutral="mmc_neutral()",
                reduce_expr="agg_mmc(a, b)", map_expr="mmc_from_scalar(x[i])",
                arguments="__global int *x", preamble=preamble)
    
        minmax = red(a_gpu).get()
        #print minmax["cur_min"], minmax["cur_max"]
        #print np.min(a), np.max(a)
    
        assert abs(minmax["cur_min"] - np.min(a)) < 1e-5
        assert abs(minmax["cur_max"] - np.max(a)) < 1e-5
    
    # }}}
    
    # {{{ scan-related
    
    def summarize_error(obtained, desired, orig, thresh=1e-5):
        err = obtained - desired
        ok_count = 0
        bad_count = 0
    
        bad_limit = 200
    
        def summarize_counts():
            if ok_count:
                entries.append("<%d ok>" % ok_count)
            if bad_count >= bad_limit:
                entries.append("<%d more bad>" % (bad_count-bad_limit))
    
        entries = []
        for i, val in enumerate(err):
            if abs(val) > thresh:
                if ok_count:
                    summarize_counts()
                    ok_count = 0
    
                bad_count += 1
    
                if bad_count < bad_limit:
                    entries.append("%r (want: %r, got: %r, orig: %r)" % (obtained[i], desired[i],
                        obtained[i], orig[i]))
            else:
                if bad_count:
                    summarize_counts()
                    bad_count = 0
    
                ok_count += 1
    
    
        summarize_counts()
    
        return " ".join(entries)
    
    scan_test_counts = [
        10,
        2 ** 8 - 1,
        2 ** 8,
        2 ** 8 + 1,
        2 ** 10 - 5,
        2 ** 10,
        2 ** 10 + 5,
        2 ** 12 - 5,
        2 ** 12,
        2 ** 12 + 5,
        2 ** 20 - 2 ** 18,
        2 ** 20 - 2 ** 18 + 5,
        2 ** 20 + 1,
        2 ** 20,
        2 ** 23 + 3,
    
        # larger sizes cause out of memory on low-end AMD APUs
    
        ]
    
    @pytools.test.mark_test.opencl
    def test_scan(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.scan import InclusiveScanKernel, ExclusiveScanKernel
    
        dtype = np.int32
        for cls in [
                InclusiveScanKernel,
                ExclusiveScanKernel
                ]:
            knl = cls(context, dtype, "a+b", "0")
    
            for n in scan_test_counts:
                host_data = np.random.randint(0, 10, n).astype(dtype)
                dev_data = cl_array.to_device(queue, host_data)
    
                assert (host_data == dev_data.get()).all() # /!\ fails on Nv GT2?? for some drivers
    
                knl(dev_data)
    
                desired_result = np.cumsum(host_data, axis=0)
                if cls is ExclusiveScanKernel:
                    desired_result -= host_data
    
                is_ok = (dev_data.get() == desired_result).all()
                if 1 and not is_ok:
                    print("something went wrong, summarizing error...")
                    print(summarize_error(dev_data.get(), desired_result, host_data))
    
                print("n:%d %s worked:%s" % (n, cls, is_ok))
                assert is_ok
                from gc import collect
                collect()
    
    @pytools.test.mark_test.opencl
    def test_copy_if(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
        for n in scan_test_counts:
            a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
            a = a_dev.get()
    
            from pyopencl.algorithm import copy_if
    
            crit = a_dev.dtype.type(300)
            selected = a[a>crit]
            selected_dev, count_dev = copy_if(a_dev, "ary[i] > myval", [("myval", crit)])
    
            assert (selected_dev.get()[:count_dev.get()] == selected).all()
            from gc import collect
            collect()
    
    @pytools.test.mark_test.opencl
    def test_partition(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
        for n in scan_test_counts:
    
            print("part", n)
    
            a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
            a = a_dev.get()
    
            crit = a_dev.dtype.type(300)
            true_host = a[a>crit]
            false_host = a[a<=crit]
    
            from pyopencl.algorithm import partition
            true_dev, false_dev, count_true_dev = partition(a_dev, "ary[i] > myval", [("myval", crit)])
    
            count_true_dev = count_true_dev.get()
    
            assert (true_dev.get()[:count_true_dev] == true_host).all()
            assert (false_dev.get()[:n-count_true_dev] == false_host).all()
    
    @pytools.test.mark_test.opencl
    def test_unique(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.clrandom import rand as clrand
        for n in scan_test_counts:
            a_dev = clrand(queue, (n,), dtype=np.int32, a=0, b=1000)
            a = a_dev.get()
            a = np.sort(a)
            a_dev = cl_array.to_device(queue, a)
    
            a_unique_host = np.unique(a)
    
            from pyopencl.algorithm import unique
            a_unique_dev, count_unique_dev = unique(a_dev)
    
            count_unique_dev = count_unique_dev.get()
    
            assert (a_unique_dev.get()[:count_unique_dev] == a_unique_host).all()
            from gc import collect
            collect()
    
    @pytools.test.mark_test.opencl
    def test_index_preservation(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.scan import GenericScanKernel, GenericDebugScanKernel
        classes = [GenericScanKernel]
    
        dev = context.devices[0]
        if dev.type == cl.device_type.CPU:
            classes.append(GenericDebugScanKernel)
    
        for cls in classes:
            for n in scan_test_counts:
                knl = cls(
                        context, np.int32,
                        arguments="__global int *out",
                        input_expr="i",
                        scan_expr="b", neutral="0",
                        output_statement="""
                            out[i] = item;
                            """)
    
                out = cl_array.empty(queue, n, dtype=np.int32)
                knl(out)
    
                assert (out.get() == np.arange(n)).all()
                from gc import collect
                collect()
    
    @pytools.test.mark_test.opencl
    def test_segmented_scan(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.tools import dtype_to_ctype
        dtype = np.int32
        ctype = dtype_to_ctype(dtype)
    
        #for is_exclusive in [False, True]:
        for is_exclusive in [True, False]:
            if is_exclusive:
                output_statement = "out[i] = prev_item"
            else:
                output_statement = "out[i] = item"
    
            from pyopencl.scan import GenericScanKernel
            knl = GenericScanKernel(context, dtype,
                    arguments="__global %s *ary, __global char *segflags, __global %s *out"
                        % (ctype, ctype),
                    input_expr="ary[i]",
                    scan_expr="across_seg_boundary ? b : (a+b)", neutral="0",
                    is_segment_start_expr="segflags[i]",
                    output_statement=output_statement,
                    options=[])
    
            np.set_printoptions(threshold=2000)
            from random import randrange
            from pyopencl.clrandom import rand as clrand
            for n in scan_test_counts:
                a_dev = clrand(queue, (n,), dtype=dtype, a=0, b=10)
                a = a_dev.get()
    
                if 10 <= n < 20:
                    seg_boundaries_values = [
                            [0, 9],
                            [0, 3],
                            [4, 6],
                            ]
                else:
                    seg_boundaries_values = []
                    for i in range(10):
                        seg_boundary_count = max(2, min(100, randrange(0, int(0.4*n))))
                        seg_boundaries = [randrange(n) for i in range(seg_boundary_count)]
                        if n >= 1029:
                            seg_boundaries.insert(0, 1028)
                        seg_boundaries.sort()
                        seg_boundaries_values.append(seg_boundaries)
    
                for seg_boundaries in seg_boundaries_values:
                    #print "BOUNDARIES", seg_boundaries
                    #print a
    
                    seg_boundary_flags = np.zeros(n, dtype=np.uint8)
                    seg_boundary_flags[seg_boundaries] = 1
                    seg_boundary_flags_dev = cl_array.to_device(queue, seg_boundary_flags)
    
                    seg_boundaries.insert(0, 0)
    
                    result_host = a.copy()
                    for i, seg_start in enumerate(seg_boundaries):
                        if i+1 < len(seg_boundaries):
                            seg_end = seg_boundaries[i+1]
                        else:
                            seg_end = None
    
                        if is_exclusive:
                            result_host[seg_start+1:seg_end] = np.cumsum(
                                    a[seg_start:seg_end][:-1])
                            result_host[seg_start] = 0
                        else:
                            result_host[seg_start:seg_end] = np.cumsum(
                                    a[seg_start:seg_end])
    
                    #print "REF", result_host
    
                    result_dev = cl_array.empty_like(a_dev)
                    knl(a_dev, seg_boundary_flags_dev, result_dev)
    
                    #print "RES", result_dev
                    is_correct = (result_dev.get() == result_host).all()
                    if not is_correct:
                        diff = result_dev.get() - result_host
                        print("RES-REF", diff)
                        print("ERRWHERE", np.where(diff))
                        print(n, list(seg_boundaries))
    
                    assert is_correct
                    from gc import collect
                    collect()
    
                print("%d excl:%s done" % (n, is_exclusive))
    
    
    @pytools.test.mark_test.opencl
    def test_sort(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        dtype = np.int32
    
        from pyopencl.algorithm import RadixSort
        sort = RadixSort(context, "int *ary", key_expr="ary[i]",
                sort_arg_names=["ary"])
    
        from pyopencl.clrandom import RanluxGenerator
        rng = RanluxGenerator(queue, seed=15)
    
        from time import time
    
    
        # intermediate arrays for largest size cause out-of-memory on low-end GPUs
        for n in scan_test_counts[:-1]:
    
            print(n)
    
            print("  rng")
            a_dev = rng.uniform(queue, (n,), dtype=dtype, a=0, b=2**16)
            a = a_dev.get()
    
            dev_start = time()
            print("  device")
            a_dev_sorted, = sort(a_dev, key_bits=16)
            queue.finish()
            dev_end = time()
            print("  numpy")
            a_sorted = np.sort(a)
            numpy_end = time()
    
            numpy_elapsed = numpy_end-dev_end
            dev_elapsed = dev_end-dev_start
            print ("  dev: %.2f MKeys/s numpy: %.2f MKeys/s ratio: %.2fx" % (
                    1e-6*n/dev_elapsed, 1e-6*n/numpy_elapsed, numpy_elapsed/dev_elapsed))
            assert (a_dev_sorted.get() == a_sorted).all()
    
    @pytools.test.mark_test.opencl
    def test_list_builder(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        from pyopencl.algorithm import ListOfListsBuilder
        builder = ListOfListsBuilder(context, [("mylist", np.int32)], """//CL//
                void generate(LIST_ARG_DECL USER_ARG_DECL index_type i)
                {
                    int count = i % 4;
                    for (int j = 0; j < count; ++j)
                    {
                        APPEND_mylist(count);
                    }
                }
                """, arg_decls=[])
    
        result = builder(queue, 2000)
    
        inf = result["mylist"]
        assert inf.count == 3000
        assert (inf.lists.get()[-6:] == [1, 2, 2, 3, 3, 3]).all()
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    @pytools.test.mark_test.opencl
    def test_key_value_sorter(ctx_factory):
        context = ctx_factory()
        queue = cl.CommandQueue(context)
    
        n = 10**5
        nkeys = 2000
        from pyopencl.clrandom import rand as clrand
        keys = clrand(queue, n, np.int32, b=nkeys)
        values = clrand(queue, n, np.int32, b=n).astype(np.int64)
    
        assert np.max(keys.get()) < nkeys
    
        from pyopencl.algorithm import KeyValueSorter
        kvs = KeyValueSorter(context)
        starts, lists = kvs(queue, keys, values, nkeys, starts_dtype=np.int32)
    
        starts = starts.get()
        lists = lists.get()
    
        mydict = dict()
        for k, v in zip(keys.get(), values.get()):
            mydict.setdefault(k, []).append(v)
    
        for i in xrange(nkeys):
            start, end = starts[i:i+2]
            assert sorted(mydict[i]) == sorted(lists[start:end])
    
    
    # }}}
    
    
    
    
    if __name__ == "__main__":
        # make sure that import failures get reported, instead of skipping the
        # tests.
        import pyopencl as cl
    
        import sys
        if len(sys.argv) > 1:
            exec(sys.argv[1])
        else:
            from py.test.cmdline import main
            main([__file__])
    
    # vim: filetype=pyopencl:fdm=marker