Newer
Older
// A C++ wrapper for CUDA (not quite yet)
#ifndef _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#define _AFJDFJSDFSD_PYCUDA_HEADER_SEEN_CUDA_HPP
#include <cuda.h>
#include <stdexcept>
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <utility>
#include <stack>
#include <iostream>
#include <vector>
#include <boost/python.hpp>
//#define CUDAPP_TRACE_CUDA
#ifdef CUDAPP_TRACE_CUDA
#define CUDAPP_PRINT_CALL_TRACE(NAME) std::cerr << NAME << std::endl;
#else
#define CUDAPP_PRINT_CALL_TRACE(NAME) /*nothing*/
#endif
#define CUDAPP_CALL_GUARDED_THREADED(NAME, ARGLIST) \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
Py_BEGIN_ALLOW_THREADS \
cu_status_code = NAME ARGLIST; \
Py_END_ALLOW_THREADS \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
#define CUDAPP_CALL_GUARDED(NAME, ARGLIST) \
{ \
CUDAPP_PRINT_CALL_TRACE(#NAME); \
CUresult cu_status_code; \
cu_status_code = NAME ARGLIST; \
if (cu_status_code != CUDA_SUCCESS) \
throw cuda::error(#NAME, cu_status_code);\
}
namespace cuda
{
namespace py = boost::python;
class error : public std::runtime_error
{
private:
const char *m_routine;
CUresult m_code;
public:
error(const char *rout, CUresult c)
: std::runtime_error(
rout + std::string(" failed: ") + curesult_to_str(c)),
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
m_routine(rout), m_code(c)
{ }
const char *routine() const
{
return m_routine;
}
CUresult code() const
{
return m_code;
}
static const char *curesult_to_str(CUresult e)
{
switch (e)
{
case CUDA_SUCCESS: return "success";
case CUDA_ERROR_INVALID_VALUE: return "invalid value";
case CUDA_ERROR_OUT_OF_MEMORY: return "out of memory";
case CUDA_ERROR_NOT_INITIALIZED: return "not initialized";
#if CUDA_VERSION >= 2000
case CUDA_ERROR_DEINITIALIZED: return "deinitialized";
#endif
case CUDA_ERROR_NO_DEVICE: return "no device";
case CUDA_ERROR_INVALID_DEVICE: return "invalid device";
case CUDA_ERROR_INVALID_IMAGE: return "invalid image";
case CUDA_ERROR_INVALID_CONTEXT: return "invalid context";
case CUDA_ERROR_CONTEXT_ALREADY_CURRENT: return "context already current";
case CUDA_ERROR_MAP_FAILED: return "map failed";
case CUDA_ERROR_UNMAP_FAILED: return "unmap failed";
case CUDA_ERROR_ARRAY_IS_MAPPED: return "array is mapped";
case CUDA_ERROR_ALREADY_MAPPED: return "already mapped";
case CUDA_ERROR_NO_BINARY_FOR_GPU: return "no binary for gpu";
case CUDA_ERROR_ALREADY_ACQUIRED: return "already acquired";
case CUDA_ERROR_NOT_MAPPED: return "not mapped";
case CUDA_ERROR_INVALID_SOURCE: return "invalid source";
case CUDA_ERROR_FILE_NOT_FOUND: return "file not found";
case CUDA_ERROR_INVALID_HANDLE: return "invalid handle";
case CUDA_ERROR_NOT_FOUND: return "not found";
case CUDA_ERROR_NOT_READY: return "not ready";
case CUDA_ERROR_LAUNCH_FAILED: return "launch failed";
case CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES: return "launch out of resources";
case CUDA_ERROR_LAUNCH_TIMEOUT: return "launch timeout";
case CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING: return "launch incompatible texturing";
case CUDA_ERROR_UNKNOWN: return "unknown";
default: return "invalid error code";
}
}
};
// device -------------------------------------------------------------------
class context;
class device
{
private:
CUdevice m_device;
public:
device(CUdevice dev)
: m_device(dev)
{ }
static int count()
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetCount, (&result));
return result;
}
std::string name()
{
char buffer[1024];
CUDAPP_CALL_GUARDED(cuDeviceGetName, (buffer, sizeof(buffer), m_device));
return buffer;
}
py::tuple compute_capability()
{
int major, minor;
CUDAPP_CALL_GUARDED(cuDeviceComputeCapability, (&major, &minor, m_device));
return py::make_tuple(major, minor);
}
unsigned int total_memory()
{
unsigned int bytes;
CUDAPP_CALL_GUARDED(cuDeviceTotalMem, (&bytes, m_device));
return bytes;
}
int get_attribute(CUdevice_attribute attr)
{
int result;
CUDAPP_CALL_GUARDED(cuDeviceGetAttribute, (&result, attr, m_device));
return result;
}
bool operator==(const device &other) const
{
return m_device == other.m_device;
}
bool operator!=(const device &other) const
{
return m_device != other.m_device;
}
long hash() const
{
return m_device;
}
boost::shared_ptr<context> make_context(unsigned int flags);
};
inline
void init(unsigned int flags)
{
CUDAPP_CALL_GUARDED(cuInit, (flags));
}
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
device *make_device(int ordinal)
{
CUdevice result;
CUDAPP_CALL_GUARDED(cuDeviceGet, (&result, ordinal));
return new device(result);
}
// context ------------------------------------------------------------------
class context
{
private:
CUcontext m_context;
bool m_valid;
typedef std::stack<boost::weak_ptr<context>,
std::vector<boost::weak_ptr<context> > > context_stack_t;
static context_stack_t m_context_stack;
public:
context(CUcontext ctx, bool borrowed)
: m_context(ctx), m_valid(!borrowed)
{
if (borrowed)
{
CUDAPP_CALL_GUARDED(cuCtxAttach, (&m_context, 0));
m_valid = true;
}
}
context(context const &src)
: m_context(src.m_context), m_valid(false)
{
CUDAPP_CALL_GUARDED(cuCtxAttach, (&m_context, 0));
m_valid = true;
}
context &operator=(const context &src)
{
detach();
m_context = src.m_context;
CUDAPP_CALL_GUARDED(cuCtxAttach, (&m_context, 0));
m_valid = true;
}
~context()
{ detach(); }
void detach()
{
if (m_valid)
{
CUDAPP_CALL_GUARDED(cuCtxDetach, (m_context));
m_valid = false;
m_context_stack.pop();
}
}
#if CUDA_VERSION >= 2000
void pop()
{
CUcontext popped;
CUDAPP_CALL_GUARDED(cuCtxPopCurrent, (&popped));
if (popped != m_context)
throw std::runtime_error("popped the wrong context");
m_context_stack.pop();
}
static device get_device()
{
CUdevice dev;
CUDAPP_CALL_GUARDED(cuCtxGetDevice, (&dev));
return device(dev);
}
#endif
static void synchronize()
{ CUDAPP_CALL_GUARDED_THREADED(cuCtxSynchronize, ()); }
static boost::shared_ptr<context> current_context()
{
while (true)
{
if (m_context_stack.size() == 0)
throw error("current_context", CUDA_ERROR_INVALID_CONTEXT);
boost::shared_ptr<context> result(m_context_stack.top());
if (result.get())
{
// good, weak pointer was not invalidated
return result;
}
// weak pointer invalidated, try again.
}
}
friend class device;
friend void context_push(boost::shared_ptr<context> ctx);
};
boost::shared_ptr<context> device::make_context(unsigned int flags)
{
CUcontext ctx;
CUDAPP_CALL_GUARDED(cuCtxCreate, (&ctx, flags, m_device));
boost::shared_ptr<context> result(new context(ctx, false));
context::m_context_stack.push(result);
return result;
}
#if CUDA_VERSION >= 2000
void context_push(boost::shared_ptr<context> ctx)
{
CUDAPP_CALL_GUARDED(cuCtxPushCurrent, (ctx->m_context));
context::m_context_stack.push(ctx);
}
#endif
class explicit_context_dependent
{
private:
boost::shared_ptr<context> m_ward_context;
public:
void acquire_context()
{
m_ward_context = context::current_context();
}
void release_context()
{
m_ward_context.reset();
}
boost::shared_ptr<context> get_context()
{
return m_ward_context;
}
class context_dependent : public explicit_context_dependent
{
private:
boost::shared_ptr<context> m_ward_context;
public:
context_dependent()
{ acquire_context(); }
};
class scoped_context_activation
{
private:
boost::shared_ptr<context> m_context;
bool m_did_switch;
public:
scoped_context_activation(boost::shared_ptr<context> ctx)
: m_context(ctx)
{
m_did_switch = context::current_context() != m_context;
if (m_did_switch)
{
#if CUDA_VERSION >= 2000
context_push(m_context);
#else
throw cuda::error("scoped_context_activation (not available in <2.0)", CUDA_ERROR_INVALID_CONTEXT)
#endif
}
~scoped_context_activation()
#if CUDA_VERSION >= 2000
if (m_did_switch)
m_context->pop();
#endif
// streams ------------------------------------------------------------------
class stream : public boost::noncopyable, public context_dependent
{
private:
CUstream m_stream;
public:
stream(unsigned int flags=0)
{ CUDAPP_CALL_GUARDED(cuStreamCreate, (&m_stream, flags)); }
~stream()
{
scoped_context_activation ca(get_context());
CUDAPP_CALL_GUARDED(cuStreamDestroy, (m_stream));
}
void synchronize()
{ CUDAPP_CALL_GUARDED_THREADED(cuStreamSynchronize, (m_stream)); }
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
CUstream data() const
{ return m_stream; }
bool is_done() const
{
#ifdef TRACE_CUDA
std::cerr << "cuStreamQuery" << std::endl;
#endif
CUresult result = cuStreamQuery(m_stream);
switch (result)
{
case CUDA_SUCCESS:
return true;
case CUDA_ERROR_NOT_READY:
return false;
default:
throw error("cuStreamQuery", result);
}
}
};
// arrays -------------------------------------------------------------------
class array : public boost::noncopyable, public context_dependent
{
private:
CUarray m_array;
bool m_managed;
public:
array(const CUDA_ARRAY_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArrayCreate, (&m_array, &descr)); }
#if CUDA_VERSION >= 2000
array(const CUDA_ARRAY3D_DESCRIPTOR &descr)
{ CUDAPP_CALL_GUARDED(cuArray3DCreate, (&m_array, &descr)); }
#endif
array(CUarray ary, bool managed)
{ }
~array()
{
if (m_managed)
{
scoped_context_activation ca(get_context());
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
CUDAPP_CALL_GUARDED(cuArrayDestroy, (m_array));
}
}
CUDA_ARRAY_DESCRIPTOR get_descriptor()
{
CUDA_ARRAY_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArrayGetDescriptor, (&result, m_array));
return result;
}
#if CUDA_VERSION >= 2000
CUDA_ARRAY3D_DESCRIPTOR get_descriptor_3d()
{
CUDA_ARRAY3D_DESCRIPTOR result;
CUDAPP_CALL_GUARDED(cuArray3DGetDescriptor, (&result, m_array));
return result;
}
#endif
CUarray data() const
{ return m_array; }
};
// texture reference --------------------------------------------------------
class module;
class texture_reference : public boost::noncopyable
{
private:
CUtexref m_texref;
bool m_managed;
// life support for array and module
boost::shared_ptr<array> m_array;
boost::shared_ptr<module> m_module;
public:
texture_reference()
: m_managed(true)
{ CUDAPP_CALL_GUARDED(cuTexRefCreate, (&m_texref)); }
texture_reference(CUtexref tr, bool managed)
: m_texref(tr), m_managed(managed)
{ }
~texture_reference()
{
if (m_managed)
{
CUDAPP_CALL_GUARDED(cuTexRefDestroy, (m_texref));
}
}
void set_module(boost::shared_ptr<module> mod)
{ m_module = mod; }
CUtexref data() const
{ return m_texref; }
void set_array(boost::shared_ptr<array> ary)
{
CUDAPP_CALL_GUARDED(cuTexRefSetArray, (m_texref,
ary->data(), CU_TRSA_OVERRIDE_FORMAT));
m_array = ary;
}
unsigned int set_address(CUdeviceptr dptr, unsigned int bytes)
{
unsigned int byte_offset;
CUDAPP_CALL_GUARDED(cuTexRefSetAddress, (&byte_offset,
m_texref, dptr, bytes));
m_array.reset();
return byte_offset;
}
void set_format(CUarray_format fmt, int num_packed_components)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFormat, (m_texref, fmt, num_packed_components)); }
void set_address_mode(int dim, CUaddress_mode am)
{ CUDAPP_CALL_GUARDED(cuTexRefSetAddressMode, (m_texref, dim, am)); }
void set_filter_mode(CUfilter_mode fm)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFilterMode, (m_texref, fm)); }
void set_flags(unsigned int flags)
{ CUDAPP_CALL_GUARDED(cuTexRefSetFlags, (m_texref, flags)); }
CUdeviceptr get_address()
{
CUdeviceptr result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddress, (&result, m_texref));
return result;
}
array *get_array()
{
CUarray result;
CUDAPP_CALL_GUARDED(cuTexRefGetArray, (&result, m_texref));
return new array(result, false);
}
CUaddress_mode get_address_mode(int dim)
{
CUaddress_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetAddressMode, (&result, m_texref, dim));
return result;
}
CUfilter_mode get_filter_mode()
{
CUfilter_mode result;
CUDAPP_CALL_GUARDED(cuTexRefGetFilterMode, (&result, m_texref));
return result;
}
#if CUDA_VERSION >= 2000
py::tuple get_format()
{
CUarray_format fmt;
int num_channels;
CUDAPP_CALL_GUARDED(cuTexRefGetFormat, (&fmt, &num_channels, m_texref));
return py::make_tuple(fmt, num_channels);
}
#endif
unsigned int get_flags()
{
unsigned int result;
CUDAPP_CALL_GUARDED(cuTexRefGetFlags, (&result, m_texref));
return result;
}
};
// module -------------------------------------------------------------------
class function;
class module : public boost::noncopyable, public context_dependent
{
private:
CUmodule m_module;
public:
module(CUmodule mod)
{ }
~module()
{
scoped_context_activation ca(get_context());
CUDAPP_CALL_GUARDED(cuModuleUnload, (m_module));
}
CUmodule data() const
{ return m_module; }
function get_function(const char *name);
py::tuple get_global(const char *name)
{
CUdeviceptr devptr;
unsigned int bytes;
CUDAPP_CALL_GUARDED(cuModuleGetGlobal, (&devptr, &bytes, m_module, name));
return py::make_tuple(devptr, bytes);
}
};
module *module_from_file(const char *filename)
{
CUmodule mod;
CUDAPP_CALL_GUARDED(cuModuleLoad, (&mod, filename));
return new module(mod);
}
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
texture_reference *module_get_texref(boost::shared_ptr<module> mod, const char *name)
{
CUtexref tr;
CUDAPP_CALL_GUARDED(cuModuleGetTexRef, (&tr, mod->data(), name));
std::auto_ptr<texture_reference> result(
new texture_reference(tr, false));
result->set_module(mod);
return result.release();
}
// function -----------------------------------------------------------------
class function
{
private:
CUfunction m_function;
public:
function(CUfunction func)
: m_function(func)
{ }
void set_block_shape(int x, int y, int z)
{ CUDAPP_CALL_GUARDED(cuFuncSetBlockShape, (m_function, x, y, z)); }
void set_shared_size(unsigned int bytes)
{ CUDAPP_CALL_GUARDED(cuFuncSetSharedSize, (m_function, bytes)); }
void param_set_size(unsigned int bytes)
{ CUDAPP_CALL_GUARDED(cuParamSetSize, (m_function, bytes)); }
void param_set(int offset, unsigned int value)
{ CUDAPP_CALL_GUARDED(cuParamSeti, (m_function, offset, value)); }
void param_set(int offset, float value)
{ CUDAPP_CALL_GUARDED(cuParamSetf, (m_function, offset, value)); }
void param_setv(int offset, void *buf, unsigned long len)
{
CUDAPP_CALL_GUARDED(cuParamSetv, (m_function, offset, buf, len));
}
void param_set_texref(const texture_reference &tr)
{
CUDAPP_CALL_GUARDED(cuParamSetTexRef, (m_function,
CU_PARAM_TR_DEFAULT, tr.data()));
}
void launch()
{ CUDAPP_CALL_GUARDED_THREADED(cuLaunch, (m_function)); }
void launch_grid(int grid_width, int grid_height)
{ CUDAPP_CALL_GUARDED_THREADED(cuLaunchGrid, (m_function, grid_width, grid_height)); }
void launch_grid_async(int grid_width, int grid_height, const stream &s)
{ CUDAPP_CALL_GUARDED_THREADED(cuLaunchGridAsync, (m_function, grid_width, grid_height, s.data())); }
function module::get_function(const char *name)
{
CUfunction func;
CUDAPP_CALL_GUARDED(cuModuleGetFunction, (&func, m_module, name));
return function(func);
}
// device memory ------------------------------------------------------------
inline
py::tuple mem_get_info()
{
unsigned int free, total;
CUDAPP_CALL_GUARDED(cuMemGetInfo, (&free, &total));
return py::make_tuple(free, total);
}
inline
CUdeviceptr mem_alloc(unsigned long bytes)
{
CUdeviceptr devptr;
CUDAPP_CALL_GUARDED(cuMemAlloc, (&devptr, bytes));
return devptr;
}
inline
void mem_free(CUdeviceptr devptr)
{
CUDAPP_CALL_GUARDED(cuMemFree, (devptr));
}
class device_allocation : public boost::noncopyable, public context_dependent
CUdeviceptr m_devptr;
public:
device_allocation(CUdeviceptr devptr)
scoped_context_activation ca(get_context());
release_context();
m_valid = false;
}
else
throw cuda::error("device_allocation::free", CUDA_ERROR_INVALID_HANDLE);
}
~device_allocation()
{
{ return m_devptr; }
};
inline
device_allocation *make_device_allocation(unsigned long bytes)
inline unsigned int mem_alloc_pitch(
std::auto_ptr<device_allocation> &da,
unsigned int width, unsigned int height, unsigned int access_size)
{
CUdeviceptr devptr;
unsigned int pitch;
CUDAPP_CALL_GUARDED(cuMemAllocPitch, (&devptr, &pitch, width, height, access_size));
da = std::auto_ptr<device_allocation>(new device_allocation(devptr));
return pitch;
py::tuple mem_get_address_range(CUdeviceptr ptr)
{
CUdeviceptr base;
unsigned int size;
CUDAPP_CALL_GUARDED(cuMemGetAddressRange, (&base, &size, ptr));
return py::make_tuple(base, size);
}
void memcpy_dtoa(array const &ary, unsigned int index, CUdeviceptr src, unsigned int len)
{ CUDAPP_CALL_GUARDED_THREADED(cuMemcpyDtoA, (ary.data(), index, src, len)); }
void memcpy_atod(CUdeviceptr dst, array const &ary, unsigned int index, unsigned int len)
{ CUDAPP_CALL_GUARDED_THREADED(cuMemcpyAtoD, (dst, ary.data(), index, len)); }
void memcpy_atoa(
array const &dst, unsigned int dst_index,
array const &src, unsigned int src_index,
unsigned int len)
{ CUDAPP_CALL_GUARDED_THREADED(cuMemcpyAtoA, (dst.data(), dst_index, src.data(), src_index, len)); }
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
// structured memcpy --------------------------------------------------------
#define MEMCPY_SETTERS \
void set_src_host(py::object buf_py) \
{ \
srcMemoryType = CU_MEMORYTYPE_HOST; \
Py_ssize_t len; \
if (PyObject_AsReadBuffer(buf_py.ptr(), &srcHost, &len)) \
throw py::error_already_set(); \
} \
\
void set_src_array(array const &ary) \
{ \
srcMemoryType = CU_MEMORYTYPE_ARRAY; \
srcArray = ary.data(); \
} \
\
void set_src_device(CUdeviceptr devptr) \
{ \
srcMemoryType = CU_MEMORYTYPE_DEVICE; \
srcDevice = devptr; \
} \
\
void set_dst_host(py::object buf_py) \
{ \
dstMemoryType = CU_MEMORYTYPE_HOST; \
Py_ssize_t len; \
if (PyObject_AsWriteBuffer(buf_py.ptr(), &dstHost, &len)) \
throw py::error_already_set(); \
} \
\
void set_dst_array(array const &ary) \
{ \
dstMemoryType = CU_MEMORYTYPE_ARRAY; \
dstArray = ary.data(); \
} \
\
void set_dst_device(CUdeviceptr devptr) \
{ \
dstMemoryType = CU_MEMORYTYPE_DEVICE; \
dstDevice = devptr; \
}
struct memcpy_2d : public CUDA_MEMCPY2D
{
memcpy_2d()
{
srcXInBytes = 0;
srcY = 0;
dstXInBytes = 0;
dstY = 0;
}
MEMCPY_SETTERS;
void execute(bool aligned) const
{
if (aligned)
{ CUDAPP_CALL_GUARDED_THREADED(cuMemcpy2D, (this)); }
{ CUDAPP_CALL_GUARDED_THREADED(cuMemcpy2DUnaligned, (this)); }
}
void execute_async(const stream &s) const
{ CUDAPP_CALL_GUARDED_THREADED(cuMemcpy2DAsync, (this, s.data())); }
};
#if CUDA_VERSION >= 2000
struct memcpy_3d : public CUDA_MEMCPY3D
{
memcpy_3d()
{
reserved0 = 0;
reserved1 = 0;
srcXInBytes = 0;
srcY = 0;
srcZ = 0;
dstXInBytes = 0;
dstY = 0;
dstZ = 0;
}
MEMCPY_SETTERS;
void execute() const
{
CUDAPP_CALL_GUARDED_THREADED(cuMemcpy3D, (this));
}
void execute_async(const stream &s) const
{ CUDAPP_CALL_GUARDED_THREADED(cuMemcpy3DAsync, (this, s.data())); }
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
};
#endif
// host memory --------------------------------------------------------------
struct host_allocation : public boost::noncopyable
{
private:
void *m_data;
public:
host_allocation(unsigned bytesize)
: m_data(0)
{ CUDAPP_CALL_GUARDED(cuMemAllocHost, (&m_data, bytesize)); }
~host_allocation()
{ CUDAPP_CALL_GUARDED(cuMemFreeHost, (m_data)); }
void *data()
{ return m_data; }
};
// events -------------------------------------------------------------------
class event : public boost::noncopyable, public context_dependent
{
private:
CUevent m_event;
public:
event(unsigned int flags=0)
{ CUDAPP_CALL_GUARDED(cuEventCreate, (&m_event, flags)); }
~event()
{
scoped_context_activation ca(get_context());
CUDAPP_CALL_GUARDED(cuEventDestroy, (m_event));
}
void record()
{ CUDAPP_CALL_GUARDED(cuEventRecord, (m_event, 0)); }
void record_in_stream(stream const &str)
{ CUDAPP_CALL_GUARDED(cuEventRecord, (m_event, str.data())); }
void synchronize()
{ CUDAPP_CALL_GUARDED_THREADED(cuEventSynchronize, (m_event)); }
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
bool query() const
{
#ifdef TRACE_CUDA
std::cerr << "cuEventQuery" << std::endl;
#endif
CUresult result = cuEventQuery(m_event);
switch (result)
{
case CUDA_SUCCESS:
return true;
case CUDA_ERROR_NOT_READY:
return false;
default:
throw error("cuEventQuery", result);
}
}
float time_since(event const &start)
{
float result;
CUDAPP_CALL_GUARDED(cuEventElapsedTime, (&result, start.m_event, m_event));
return result;
}
float time_till(event const &end)
{
float result;
CUDAPP_CALL_GUARDED(cuEventElapsedTime, (&result, m_event, end.m_event));
return result;
}
};
}