Skip to content
Snippets Groups Projects
Commit 69b1707b authored by Andreas Klöckner's avatar Andreas Klöckner
Browse files

Delete some more unnecessary code in eager interface

parent 3f40665f
Branches
Tags
1 merge request!63Add eagerly evaluated interface to grudge, plus example
......@@ -23,7 +23,7 @@ THE SOFTWARE.
"""
import numpy as np
import numpy as np # noqa
from grudge.discretization import DGDiscretizationWithBoundaries
from pytools import memoize_method
from pytools.obj_array import (
......@@ -55,34 +55,6 @@ class EagerDGDiscretization(DGDiscretizationWithBoundaries):
def nodes(self):
return self._volume_discr.nodes()
@memoize_method
def parametrization_derivative(self):
with cl.CommandQueue(self.cl_context) as queue:
fmat = sym.forward_metric_derivative_mat(
self.ambient_dim, self.dim)
result = bind(self, fmat.reshape(-1))(queue)
return result.reshape(*fmat.shape)
@memoize_method
def vol_jacobian(self):
with cl.CommandQueue(self.cl_context) as queue:
[a, b], [c, d] = with_queue(queue, self.parametrization_derivative())
return (a*d-b*c).with_queue(None)
@memoize_method
def inverse_parametrization_derivative(self):
with cl.CommandQueue(self.cl_context) as queue:
[a, b], [c, d] = with_queue(queue, self.parametrization_derivative())
result = np.zeros((2, 2), dtype=object)
det = a*d-b*c
result[0, 0] = d/det
result[0, 1] = -b/det
result[1, 0] = -c/det
result[1, 1] = a/det
return without_queue(result)
@memoize_method
def _bound_grad(self):
return bind(self, sym.nabla(self.dim) * sym.Variable("u"))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment