diff --git a/grudge/eager.py b/grudge/eager.py index 32e489fbc4a338cabb9e889e2169735f9ba4ccfd..5cf380f822f294cfef83e843bd1eb9c1aa3b7010 100644 --- a/grudge/eager.py +++ b/grudge/eager.py @@ -23,7 +23,7 @@ THE SOFTWARE. """ -import numpy as np +import numpy as np # noqa from grudge.discretization import DGDiscretizationWithBoundaries from pytools import memoize_method from pytools.obj_array import ( @@ -55,34 +55,6 @@ class EagerDGDiscretization(DGDiscretizationWithBoundaries): def nodes(self): return self._volume_discr.nodes() - @memoize_method - def parametrization_derivative(self): - with cl.CommandQueue(self.cl_context) as queue: - fmat = sym.forward_metric_derivative_mat( - self.ambient_dim, self.dim) - result = bind(self, fmat.reshape(-1))(queue) - return result.reshape(*fmat.shape) - - @memoize_method - def vol_jacobian(self): - with cl.CommandQueue(self.cl_context) as queue: - [a, b], [c, d] = with_queue(queue, self.parametrization_derivative()) - return (a*d-b*c).with_queue(None) - - @memoize_method - def inverse_parametrization_derivative(self): - with cl.CommandQueue(self.cl_context) as queue: - [a, b], [c, d] = with_queue(queue, self.parametrization_derivative()) - - result = np.zeros((2, 2), dtype=object) - det = a*d-b*c - result[0, 0] = d/det - result[0, 1] = -b/det - result[1, 0] = -c/det - result[1, 1] = a/det - - return without_queue(result) - @memoize_method def _bound_grad(self): return bind(self, sym.nabla(self.dim) * sym.Variable("u"))