Skip to content
Snippets Groups Projects
test_grudge.py 33.9 KiB
Newer Older
__copyright__ = """
Copyright (C) 2015 Andreas Kloeckner
Copyright (C) 2021 University of Illinois Board of Trustees
"""

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

import numpy as np
import numpy.linalg as la

from arraycontext import (  # noqa
    pytest_generate_tests_for_pyopencl_array_context
    as pytest_generate_tests
)
from arraycontext.container.traversal import thaw

from meshmode import _acf       # noqa: F401
from meshmode.dof_array import flatten, flat_norm
from pytools.obj_array import flat_obj_array, make_obj_array
from grudge import DiscretizationCollection
import grudge.dof_desc as dof_desc

import logging
logger = logging.getLogger(__name__)

# {{{ inverse metric

def test_inverse_metric(actx_factory, dim):
    actx = actx_factory()
    mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
            nelements_per_axis=(6,)*dim, order=4)

    def m(x):
        result = np.empty_like(x)
        result[0] = (
                1.5*x[0] + np.cos(x[0])
                + 0.1*np.sin(10*x[1]))
        result[1] = (
                0.05*np.cos(10*x[0])
                + 1.3*x[1] + np.sin(x[1]))
        if len(x) == 3:
            result[2] = x[2]
        return result

    from meshmode.mesh.processing import map_mesh
    mesh = map_mesh(mesh, m)

    dcoll = DiscretizationCollection(actx, mesh, order=4)
    from grudge.geometry import \
        forward_metric_derivative_mat, inverse_metric_derivative_mat
    mat = forward_metric_derivative_mat(actx, dcoll).dot(
        inverse_metric_derivative_mat(actx, dcoll))

    for i in range(mesh.dim):
        for j in range(mesh.dim):
            tgt = 1 if i == j else 0

            err = flat_norm(mat[i, j] - tgt, ord=np.inf)
            logger.info("error[%d, %d]: %.5e", i, j, err)
            assert err < 1.0e-12, (i, j, err)
# }}}


# {{{ mass operator trig integration
@pytest.mark.parametrize("ambient_dim", [1, 2, 3])
@pytest.mark.parametrize("discr_tag", [dof_desc.DISCR_TAG_BASE,
                                       dof_desc.DISCR_TAG_QUAD])
def test_mass_mat_trig(actx_factory, ambient_dim, discr_tag):
    """Check the integral of some trig functions on an interval using the mass
    a = -4.0 * np.pi
    b = +9.0 * np.pi
    true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
    from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
    dd_quad = dof_desc.DOFDesc(dof_desc.DTAG_VOLUME_ALL, discr_tag)
    if discr_tag is dof_desc.DISCR_TAG_BASE:
        discr_tag_to_group_factory = {}
        discr_tag_to_group_factory = {
            discr_tag: QuadratureSimplexGroupFactory(order=2*order)
        }
    mesh = mgen.generate_regular_rect_mesh(
            a=(a,)*ambient_dim, b=(b,)*ambient_dim,
            nelements_per_axis=(nel_1d,)*ambient_dim, order=1)
    dcoll = DiscretizationCollection(
        actx, mesh, order=order,
        discr_tag_to_group_factory=discr_tag_to_group_factory
    )
    def f(x):
        return actx.np.sin(x[0])**2
    volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    x_volm = thaw(volm_disc.nodes(), actx)
    f_volm = f(x_volm)
    ones_volm = volm_disc.zeros(actx) + 1
    quad_disc = dcoll.discr_from_dd(dd_quad)
    x_quad = thaw(quad_disc.nodes(), actx)
    f_quad = f(x_quad)
    ones_quad = quad_disc.zeros(actx) + 1
    mop_1 = op.mass(dcoll, dd_quad, f_quad)
    num_integral_1 = np.dot(actx.to_numpy(flatten(ones_volm)),
                            actx.to_numpy(flatten(mop_1)))

    err_1 = abs(num_integral_1 - true_integral)
    assert err_1 < 2e-9, err_1
    mop_2 = op.mass(dcoll, dd_quad, ones_quad)
    num_integral_2 = np.dot(actx.to_numpy(flatten(f_volm)),
                            actx.to_numpy(flatten(mop_2)))

    err_2 = abs(num_integral_2 - true_integral)
    assert err_2 < 2e-9, err_2
    if discr_tag is dof_desc.DISCR_TAG_BASE:
        # NOTE: `integral` always makes a square mass matrix and
        # `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
        num_integral_3 = np.dot(actx.to_numpy(flatten(f_quad)),
                                actx.to_numpy(flatten(mop_2)))
        err_3 = abs(num_integral_3 - true_integral)
        assert err_3 < 5e-10, err_3
# {{{ mass operator on surface
def _ellipse_surface_area(radius, aspect_ratio):
    # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
    eccentricity = 1.0 - (1/aspect_ratio)**2

    if abs(aspect_ratio - 2.0) < 1.0e-14:
        # NOTE: hardcoded value so we don't need scipy for the test
        ellip_e = 1.2110560275684594
    else:
        from scipy.special import ellipe        # pylint: disable=no-name-in-module
        ellip_e = ellipe(eccentricity)

    return 4.0 * radius * ellip_e


def _spheroid_surface_area(radius, aspect_ratio):
    # https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
    a = 1.0
    c = aspect_ratio

    if a < c:
        e = np.sqrt(1.0 - (a/c)**2)
        return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
    else:
        e = np.sqrt(1.0 - (c/a)**2)
        return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))


@pytest.mark.parametrize("name", [
    "2-1-ellipse", "spheroid", "box2d", "box3d"
def test_mass_surface_area(actx_factory, name):
    actx = actx_factory()

    # {{{ cases

    if name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio)
    elif name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
        surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio)
    elif name == "box2d":
        from mesh_data import BoxMeshBuilder
        builder = BoxMeshBuilder(ambient_dim=2)
        surface_area = 1.0
    elif name == "box3d":
        from mesh_data import BoxMeshBuilder
        builder = BoxMeshBuilder(ambient_dim=3)
        surface_area = 1.0
    else:
        raise ValueError("unknown geometry name: %s" % name)

    # }}}

    # {{{ convergence

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    for resolution in builder.resolutions:
        mesh = builder.get_mesh(resolution, builder.mesh_order)
        dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
        volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
        logger.info("ndofs:     %d", volume_discr.ndofs)
        logger.info("nelements: %d", volume_discr.mesh.nelements)

        # {{{ compute surface area

        dd = dof_desc.DD_VOLUME
        ones_volm = volume_discr.zeros(actx) + 1
        flattened_mass_weights = flatten(op.mass(dcoll, dd, ones_volm))
        approx_surface_area = np.dot(actx.to_numpy(flatten(ones_volm)),
                                     actx.to_numpy(flattened_mass_weights))

        logger.info("surface: got {:.5e} / expected {:.5e}".format(
            approx_surface_area, surface_area))
        area_error = abs(approx_surface_area - surface_area) / abs(surface_area)

        # }}}

Thomas Gibson's avatar
Thomas Gibson committed
        # compute max element size
        h_max = op.h_max_from_volume(dcoll)

        eoc.add_data_point(h_max, area_error)

    # }}}

    logger.info("surface area error\n%s", str(eoc))

    assert eoc.max_error() < 3e-13 or eoc.order_estimate() > builder.order
# {{{ mass inverse on surfaces

@pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"])
def test_surface_mass_operator_inverse(actx_factory, name):
    actx = actx_factory()

    # {{{ cases

    if name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
    else:
        raise ValueError("unknown geometry name: %s" % name)

    # }}}

    # {{{ convergence

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    for resolution in builder.resolutions:
        mesh = builder.get_mesh(resolution, builder.mesh_order)
        dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
        volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
        logger.info("ndofs:     %d", volume_discr.ndofs)
        logger.info("nelements: %d", volume_discr.mesh.nelements)

        # {{{ compute inverse mass

        def f(x):
            return actx.np.cos(4.0 * x[0])

        dd = dof_desc.DD_VOLUME
        x_volm = thaw(volume_discr.nodes(), actx)
        f_inv = op.inverse_mass(
            dcoll, op.mass(dcoll, dd, f_volm)
        )

        inv_error = op.norm(dcoll, f_volm - f_inv, 2) / op.norm(dcoll, f_volm, 2)
Thomas Gibson's avatar
Thomas Gibson committed
        # compute max element size
        h_max = op.h_max_from_volume(dcoll)

        eoc.add_data_point(h_max, inv_error)

    # }}}

    logger.info("inverse mass error\n%s", str(eoc))

    # NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the
    # safe side, choose a slightly larger tolerance
    assert eoc.max_error() < 1.0e-14
# }}}


# {{{ surface face normal orthogonality

@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_face_normal_surface(actx_factory, mesh_name):
    """Check that face normals are orthogonal to the surface normal"""
    actx = actx_factory()

    # {{{ geometry

    if mesh_name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif mesh_name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
    else:
        raise ValueError("unknown mesh name: %s" % mesh_name)

    mesh = builder.get_mesh(builder.resolutions[0], builder.mesh_order)
    dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
    volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    logger.info("ndofs:    %d", volume_discr.ndofs)
    logger.info("nelements: %d", volume_discr.mesh.nelements)

    # {{{ Compute surface and face normals
    from meshmode.discretization.connection import FACE_RESTR_INTERIOR
    from grudge.geometry import surface_normal
    dv = dof_desc.DD_VOLUME
    df = dof_desc.as_dofdesc(FACE_RESTR_INTERIOR)

    ambient_dim = mesh.ambient_dim
    surf_normal = op.project(
        dcoll, dv, df,
        surface_normal(actx, dcoll,
                       dim=dim, dd=dv).as_vector(dtype=object)
    )
    surf_normal = surf_normal / actx.np.sqrt(sum(surf_normal**2))
    face_normal_i = thaw(op.normal(dcoll, df), actx)
    face_normal_e = dcoll.opposite_face_connection()(face_normal_i)

    if mesh.ambient_dim == 3:
        from grudge.geometry import pseudoscalar, area_element
        # NOTE: there's only one face tangent in 3d
        face_tangent = (
            pseudoscalar(actx, dcoll, dim=dim-1, dd=df)
            / area_element(actx, dcoll, dim=dim-1, dd=df)
        ).as_vector(dtype=object)
    def _eval_error(x):
        return op.norm(dcoll, x, np.inf, dd=df)
    rtol = 1.0e-14

    # check interpolated surface normal is orthogonal to face normal
    error = _eval_error(surf_normal.dot(face_normal_i))
    logger.info("error[n_dot_i]:    %.5e", error)
    assert error < rtol

    # check angle between two neighboring elements
    error = _eval_error(face_normal_i.dot(face_normal_e) + 1.0)
    logger.info("error[i_dot_e]:    %.5e", error)
    assert error > rtol

    # check orthogonality with face tangent
    if ambient_dim == 3:
        error = _eval_error(face_tangent.dot(face_normal_i))
        logger.info("error[t_dot_i]:  %.5e", error)
        assert error < 5 * rtol

    # }}}

# }}}


# {{{ diff operator
@pytest.mark.parametrize("dim", [1, 2, 3])
def test_tri_diff_mat(actx_factory, dim, order=4):
    """Check differentiation matrix along the coordinate axes on a disk

    Uses sines as the function to differentiate.
    """


    from pytools.convergence import EOCRecorder
    axis_eoc_recs = [EOCRecorder() for axis in range(dim)]

    def f(x, axis):
        return actx.np.sin(3*x[axis])

    def df(x, axis):
        return 3*actx.np.cos(3*x[axis])

    for n in [4, 8, 16]:
        mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
                nelements_per_axis=(n,)*dim, order=4)
        dcoll = DiscretizationCollection(actx, mesh, order=4)
        volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
        x = thaw(volume_discr.nodes(), actx)
            df_num = op.local_grad(dcoll, f(x, axis))[axis]
            df_volm = df(x, axis)
            linf_error = flat_norm(df_num - df_volm, ord=np.inf)
            axis_eoc_recs[axis].add_data_point(1/n, linf_error)

    for axis, eoc_rec in enumerate(axis_eoc_recs):
        logger.info("axis %d\n%s", axis, eoc_rec)
        assert eoc_rec.order_estimate() > order - 0.25
# }}}


# {{{ divergence theorem
def test_2d_gauss_theorem(actx_factory):
    """Verify Gauss's theorem explicitly on a mesh"""

    pytest.importorskip("meshpy")

    from meshpy.geometry import make_circle, GeometryBuilder
    from meshpy.triangle import MeshInfo, build

    geob = GeometryBuilder()
    geob.add_geometry(*make_circle(1))
    mesh_info = MeshInfo()
    geob.set(mesh_info)

    mesh_info = build(mesh_info)

    from meshmode.mesh.io import from_meshpy
    from meshmode.mesh import BTAG_ALL

    mesh = from_meshpy(mesh_info, order=1)

    dcoll = DiscretizationCollection(actx, mesh, order=2)
    volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    x_volm = thaw(volm_disc.nodes(), actx)
        return flat_obj_array(
Loading
Loading full blame...