Newer
Older
__copyright__ = """
Copyright (C) 2015 Andreas Kloeckner
Copyright (C) 2021 University of Illinois Board of Trustees
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
from arraycontext import ( # noqa
pytest_generate_tests_for_pyopencl_array_context
as pytest_generate_tests
)
from arraycontext.container.traversal import thaw
from meshmode.dof_array import flatten, flat_norm
Andreas Klöckner
committed
import meshmode.mesh.generation as mgen
from pytools.obj_array import flat_obj_array, make_obj_array
from grudge import DiscretizationCollection
import grudge.op as op
Andreas Klöckner
committed
@pytest.mark.parametrize("dim", [2, 3])
def test_inverse_metric(actx_factory, dim):
actx = actx_factory()
mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
nelements_per_axis=(6,)*dim, order=4)
def m(x):
result = np.empty_like(x)
result[0] = (
1.5*x[0] + np.cos(x[0])
+ 0.1*np.sin(10*x[1]))
result[1] = (
0.05*np.cos(10*x[0])
+ 1.3*x[1] + np.sin(x[1]))
if len(x) == 3:
result[2] = x[2]
return result
from meshmode.mesh.processing import map_mesh
mesh = map_mesh(mesh, m)
dcoll = DiscretizationCollection(actx, mesh, order=4)
from grudge.geometry import \
forward_metric_derivative_mat, inverse_metric_derivative_mat
mat = forward_metric_derivative_mat(actx, dcoll).dot(
inverse_metric_derivative_mat(actx, dcoll))
for i in range(mesh.dim):
for j in range(mesh.dim):
tgt = 1 if i == j else 0
err = flat_norm(mat[i, j] - tgt, ord=np.inf)
logger.info("error[%d, %d]: %.5e", i, j, err)
assert err < 1.0e-12, (i, j, err)
# }}}
# {{{ mass operator trig integration
@pytest.mark.parametrize("ambient_dim", [1, 2, 3])
@pytest.mark.parametrize("discr_tag", [dof_desc.DISCR_TAG_BASE,
dof_desc.DISCR_TAG_QUAD])
def test_mass_mat_trig(actx_factory, ambient_dim, discr_tag):
"""Check the integral of some trig functions on an interval using the mass
actx = actx_factory()
nel_1d = 16
a = -4.0 * np.pi
b = +9.0 * np.pi
true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
dd_quad = dof_desc.DOFDesc(dof_desc.DTAG_VOLUME_ALL, discr_tag)
if discr_tag is dof_desc.DISCR_TAG_BASE:
discr_tag_to_group_factory = {}
discr_tag_to_group_factory = {
discr_tag: QuadratureSimplexGroupFactory(order=2*order)
}
mesh = mgen.generate_regular_rect_mesh(
a=(a,)*ambient_dim, b=(b,)*ambient_dim,
nelements_per_axis=(nel_1d,)*ambient_dim, order=1)
dcoll = DiscretizationCollection(
actx, mesh, order=order,
discr_tag_to_group_factory=discr_tag_to_group_factory
)
def f(x):
return actx.np.sin(x[0])**2
volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
f_volm = f(x_volm)
ones_volm = volm_disc.zeros(actx) + 1
quad_disc = dcoll.discr_from_dd(dd_quad)
f_quad = f(x_quad)
ones_quad = quad_disc.zeros(actx) + 1
mop_1 = op.mass(dcoll, dd_quad, f_quad)
num_integral_1 = np.dot(actx.to_numpy(flatten(ones_volm)),
actx.to_numpy(flatten(mop_1)))
err_1 = abs(num_integral_1 - true_integral)
assert err_1 < 2e-9, err_1
mop_2 = op.mass(dcoll, dd_quad, ones_quad)
num_integral_2 = np.dot(actx.to_numpy(flatten(f_volm)),
actx.to_numpy(flatten(mop_2)))
err_2 = abs(num_integral_2 - true_integral)
assert err_2 < 2e-9, err_2
if discr_tag is dof_desc.DISCR_TAG_BASE:
# NOTE: `integral` always makes a square mass matrix and
# `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
num_integral_3 = np.dot(actx.to_numpy(flatten(f_quad)),
actx.to_numpy(flatten(mop_2)))
err_3 = abs(num_integral_3 - true_integral)
assert err_3 < 5e-10, err_3
# {{{ mass operator on surface
def _ellipse_surface_area(radius, aspect_ratio):
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
eccentricity = 1.0 - (1/aspect_ratio)**2
if abs(aspect_ratio - 2.0) < 1.0e-14:
# NOTE: hardcoded value so we don't need scipy for the test
ellip_e = 1.2110560275684594
else:
from scipy.special import ellipe # pylint: disable=no-name-in-module
ellip_e = ellipe(eccentricity)
return 4.0 * radius * ellip_e
def _spheroid_surface_area(radius, aspect_ratio):
# https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
a = 1.0
c = aspect_ratio
if a < c:
e = np.sqrt(1.0 - (a/c)**2)
return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
else:
e = np.sqrt(1.0 - (c/a)**2)
return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))
@pytest.mark.parametrize("name", [
"2-1-ellipse", "spheroid", "box2d", "box3d"
def test_mass_surface_area(actx_factory, name):
actx = actx_factory()
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio)
elif name == "box2d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=2)
surface_area = 1.0
elif name == "box3d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=3)
surface_area = 1.0
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# {{{ compute surface area
ones_volm = volume_discr.zeros(actx) + 1
flattened_mass_weights = flatten(op.mass(dcoll, dd, ones_volm))
approx_surface_area = np.dot(actx.to_numpy(flatten(ones_volm)),
actx.to_numpy(flattened_mass_weights))
logger.info("surface: got {:.5e} / expected {:.5e}".format(
approx_surface_area, surface_area))
area_error = abs(approx_surface_area - surface_area) / abs(surface_area)
# }}}
# compute max element size
h_max = op.h_max_from_volume(dcoll)
eoc.add_data_point(h_max, area_error)
# }}}
logger.info("surface area error\n%s", str(eoc))
assert eoc.max_error() < 3e-13 or eoc.order_estimate() > builder.order
# {{{ mass inverse on surfaces
@pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"])
def test_surface_mass_operator_inverse(actx_factory, name):
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# {{{ compute inverse mass
def f(x):
return actx.np.cos(4.0 * x[0])
f_volm = f(x_volm)
dcoll, op.mass(dcoll, dd, f_volm)
)
inv_error = op.norm(dcoll, f_volm - f_inv, 2) / op.norm(dcoll, f_volm, 2)
# compute max element size
h_max = op.h_max_from_volume(dcoll)
eoc.add_data_point(h_max, inv_error)
# }}}
logger.info("inverse mass error\n%s", str(eoc))
# NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the
# safe side, choose a slightly larger tolerance
assert eoc.max_error() < 1.0e-14
# }}}
# {{{ surface face normal orthogonality
@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_face_normal_surface(actx_factory, mesh_name):
"""Check that face normals are orthogonal to the surface normal"""
# {{{ geometry
if mesh_name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif mesh_name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown mesh name: %s" % mesh_name)
mesh = builder.get_mesh(builder.resolutions[0], builder.mesh_order)
dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
from meshmode.discretization.connection import FACE_RESTR_INTERIOR
from grudge.geometry import surface_normal
dv = dof_desc.DD_VOLUME
df = dof_desc.as_dofdesc(FACE_RESTR_INTERIOR)
ambient_dim = mesh.ambient_dim
surf_normal = op.project(
dcoll, dv, df,
surface_normal(actx, dcoll,
dim=dim, dd=dv).as_vector(dtype=object)
)
surf_normal = surf_normal / actx.np.sqrt(sum(surf_normal**2))
face_normal_i = thaw(op.normal(dcoll, df), actx)
face_normal_e = dcoll.opposite_face_connection()(face_normal_i)
from grudge.geometry import pseudoscalar, area_element
# NOTE: there's only one face tangent in 3d
face_tangent = (
pseudoscalar(actx, dcoll, dim=dim-1, dd=df)
/ area_element(actx, dcoll, dim=dim-1, dd=df)
).as_vector(dtype=object)
# }}}
# {{{ checks
rtol = 1.0e-14
# check interpolated surface normal is orthogonal to face normal
error = _eval_error(surf_normal.dot(face_normal_i))
logger.info("error[n_dot_i]: %.5e", error)
assert error < rtol
# check angle between two neighboring elements
error = _eval_error(face_normal_i.dot(face_normal_e) + 1.0)
logger.info("error[i_dot_e]: %.5e", error)
assert error > rtol
# check orthogonality with face tangent
if ambient_dim == 3:
error = _eval_error(face_tangent.dot(face_normal_i))
logger.info("error[t_dot_i]: %.5e", error)
assert error < 5 * rtol
# }}}
# }}}
# {{{ diff operator
@pytest.mark.parametrize("dim", [1, 2, 3])
def test_tri_diff_mat(actx_factory, dim, order=4):
"""Check differentiation matrix along the coordinate axes on a disk
Uses sines as the function to differentiate.
"""
actx = actx_factory()
from pytools.convergence import EOCRecorder
axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
def f(x, axis):
return actx.np.sin(3*x[axis])
def df(x, axis):
return 3*actx.np.cos(3*x[axis])
mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
nelements_per_axis=(n,)*dim, order=4)
dcoll = DiscretizationCollection(actx, mesh, order=4)
volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
for axis in range(dim):
df_num = op.local_grad(dcoll, f(x, axis))[axis]
df_volm = df(x, axis)
linf_error = flat_norm(df_num - df_volm, ord=np.inf)
axis_eoc_recs[axis].add_data_point(1/n, linf_error)
for axis, eoc_rec in enumerate(axis_eoc_recs):
logger.info("axis %d\n%s", axis, eoc_rec)
assert eoc_rec.order_estimate() > order - 0.25
# }}}
# {{{ divergence theorem
def test_2d_gauss_theorem(actx_factory):
"""Verify Gauss's theorem explicitly on a mesh"""
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info)
from meshmode.mesh.io import from_meshpy
from meshmode.mesh import BTAG_ALL
mesh = from_meshpy(mesh_info, order=1)
actx = actx_factory()
dcoll = DiscretizationCollection(actx, mesh, order=2)
volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
return flat_obj_array(
Loading
Loading full blame...