Skip to content
Snippets Groups Projects
vortex-sources.py 12.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = "Copyright (C) 2008 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    
    
    from __future__ import division
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
    from __future__ import absolute_import
    from __future__ import print_function
    
    import numpy
    import numpy.linalg as la
    
    # modifies isentropic vortex solution so that rho->Arho, P->A^gamma rho^gamma
    # this will be analytic solution if appropriate source terms are added
    # to the RHS. coded for vel_x=1, vel_y=0
    
    
    class Vortex:
        def __init__(self, beta, gamma, center, velocity, densityA):
            self.beta = beta
            self.gamma = gamma
            self.center = numpy.asarray(center)
            self.velocity = numpy.asarray(velocity)
            self.densityA = densityA
    
        def __call__(self, t, x_vec):
            vortex_loc = self.center + t*self.velocity
    
            # coordinates relative to vortex center
            x_rel = x_vec[0] - vortex_loc[0]
            y_rel = x_vec[1] - vortex_loc[1]
    
            # Y.C. Zhou, G.W. Wei / Journal of Computational Physics 189 (2003) 159
            # also JSH/TW Nodal DG Methods, p. 209
    
            from math import pi
            r = numpy.sqrt(x_rel**2+y_rel**2)
            expterm = self.beta*numpy.exp(1-r**2)
            u = self.velocity[0] - expterm*y_rel/(2*pi)
            v = self.velocity[1] + expterm*x_rel/(2*pi)
            rho = self.densityA*(1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1))
            p = rho**self.gamma
    
            e = p/(self.gamma-1) + rho/2*(u**2+v**2)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from grudge.tools import join_fields
    
            return join_fields(rho, e, rho*u, rho*v)
    
        def volume_interpolant(self, t, discr):
            return discr.convert_volume(
                            self(t, discr.nodes.T
                                .astype(discr.default_scalar_type)),
                            kind=discr.compute_kind)
    
        def boundary_interpolant(self, t, discr, tag):
            return discr.convert_boundary(
                            self(t, discr.get_boundary(tag).nodes.T
                                .astype(discr.default_scalar_type)),
                             tag=tag, kind=discr.compute_kind)
    
    
    
    class SourceTerms:
        def __init__(self, beta, gamma, center, velocity, densityA):
            self.beta = beta
            self.gamma = gamma
            self.center = numpy.asarray(center)
            self.velocity = numpy.asarray(velocity)
            self.densityA = densityA
    
    
    
        def __call__(self,t,x_vec,q):
    
            vortex_loc = self.center + t*self.velocity
    
            # coordinates relative to vortex center
            x_rel = x_vec[0] - vortex_loc[0]
            y_rel = x_vec[1] - vortex_loc[1]
    
    
            # sources written in terms of A=1.0 solution
    
            # (standard isentropic vortex)
    
            from math import pi
            r = numpy.sqrt(x_rel**2+y_rel**2)
            expterm = self.beta*numpy.exp(1-r**2)
            u = self.velocity[0] - expterm*y_rel/(2*pi)
            v = self.velocity[1] + expterm*x_rel/(2*pi)
            rho = (1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1))
            p = rho**self.gamma
    
            #computed necessary derivatives
            expterm_t = 2*expterm*x_rel
            expterm_x = -2*expterm*x_rel
            expterm_y = -2*expterm*y_rel
            u_x = -expterm*y_rel/(2*pi)*(-2*x_rel)
            v_y = expterm*x_rel/(2*pi)*(-2*y_rel)
    
            #derivatives for rho (A=1)
            facG=self.gamma-1
            rho_t = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
                    (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_t)
            rho_x = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
                    (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_x)
            rho_y = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
                    (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_y)
    
            #derivatives for rho (A=1) to the power of gamma
            rho_gamma_t = self.gamma*rho**(self.gamma-1)*rho_t
            rho_gamma_x = self.gamma*rho**(self.gamma-1)*rho_x
            rho_gamma_y = self.gamma*rho**(self.gamma-1)*rho_y
    
    
            factorA=self.densityA**self.gamma-self.densityA
            #construct source terms
            source_rho = x_vec[0]-x_vec[0]
            source_e = (factorA/(self.gamma-1))*(rho_gamma_t + self.gamma*(u_x*rho**self.gamma+u*rho_gamma_x)+ \
                    self.gamma*(v_y*rho**self.gamma+v*rho_gamma_y))
            source_rhou = factorA*rho_gamma_x
            source_rhov = factorA*rho_gamma_y
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from grudge.tools import join_fields
    
            return join_fields(source_rho, source_e, source_rhou, source_rhov, x_vec[0]-x_vec[0])
    
        def volume_interpolant(self,t,q,discr):
            return discr.convert_volume(
                    self(t,discr.nodes.T,q),
                    kind=discr.compute_kind)
    
    
    def main(write_output=True):
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from grudge.backends import guess_run_context
    
        rcon = guess_run_context(
                        #["cuda"]
                        )
    
        gamma = 1.4
    
    
        # at A=1 we have case of isentropic vortex, source terms
    
        # arise for other values
        densityA = 2.0
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
        from grudge.tools import EOCRecorder, to_obj_array
    
        eoc_rec = EOCRecorder()
    
        if rcon.is_head_rank:
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from grudge.mesh import \
    
                    make_rect_mesh, \
                    make_centered_regular_rect_mesh
    
            refine = 1
            mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                    post_refine_factor=refine)
            mesh_data = rcon.distribute_mesh(mesh)
        else:
            mesh_data = rcon.receive_mesh()
    
        for order in [4,5]:
            discr = rcon.make_discretization(mesh_data, order=order,
                            debug=[#"cuda_no_plan",
                            #"print_op_code"
                            ],
                            default_scalar_type=numpy.float64)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from grudge.visualization import SiloVisualizer, VtkVisualizer
    
            #vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
            vis = SiloVisualizer(discr, rcon)
    
            vortex = Vortex(beta=5, gamma=gamma,
                    center=[5,0],
                    velocity=[1,0], densityA=densityA)
            fields = vortex.volume_interpolant(0, discr)
            sources=SourceTerms(beta=5, gamma=gamma,
                    center=[5,0],
                    velocity=[1,0], densityA=densityA)
    
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from grudge.models.gas_dynamics import (
    
                    GasDynamicsOperator, GammaLawEOS)
    
            from grudge.mesh import BTAG_ALL
    
    
            op = GasDynamicsOperator(dimensions=2,
    
                    mu=0.0, prandtl=0.72, spec_gas_const=287.1,
    
                    equation_of_state=GammaLawEOS(vortex.gamma),
                    bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
    
                    inflow_tag=BTAG_ALL, source=sources)
    
    
            euler_ex = op.bind(discr)
    
            max_eigval = [0]
            def rhs(t, q):
                ode_rhs, speed = euler_ex(t, q)
                max_eigval[0] = speed
                return ode_rhs
            rhs(0, fields)
    
            if rcon.is_head_rank:
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                print("---------------------------------------------")
                print("order %d" % order)
                print("---------------------------------------------")
                print("#elements=", len(mesh.elements))
    
    
            # limiter setup -------------------------------------------------------
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from grudge.models.gas_dynamics import SlopeLimiter1NEuler
    
            limiter = SlopeLimiter1NEuler(discr, gamma, 2, op)
    
            # time stepper --------------------------------------------------------
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
            from grudge.timestep import SSPRK3TimeStepper, RK4TimeStepper
    
            #stepper = SSPRK3TimeStepper(limiter=limiter)
            #stepper = SSPRK3TimeStepper()
            stepper = RK4TimeStepper()
    
            # diagnostics setup ---------------------------------------------------
            from pytools.log import LogManager, add_general_quantities, \
                    add_simulation_quantities, add_run_info
    
            if write_output:
                log_file_name = "euler-%d.dat" % order
            else:
                log_file_name = None
    
            logmgr = LogManager(log_file_name, "w", rcon.communicator)
            add_run_info(logmgr)
            add_general_quantities(logmgr)
            add_simulation_quantities(logmgr)
            discr.add_instrumentation(logmgr)
            stepper.add_instrumentation(logmgr)
    
            logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
    
            # timestep loop -------------------------------------------------------
            t = 0
    
            #fields = limiter(fields)
    
            try:
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                from grudge.timestep import times_and_steps
    
                step_it = times_and_steps(
                        final_time=.1,
                        #max_steps=500,
                        logmgr=logmgr,
                        max_dt_getter=lambda t: 0.4*op.estimate_timestep(discr,
                            stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
    
                for step, t, dt in step_it:
                    if step % 1 == 0 and write_output:
                    #if False:
                        visf = vis.make_file("vortex-%d-%04d" % (order, step))
    
                        true_fields = vortex.volume_interpolant(t, discr)
    
                        #rhs_fields = rhs(t, fields)
    
                        from pyvisfile.silo import DB_VARTYPE_VECTOR
                        vis.add_data(visf,
                                [
                                    ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                    ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                    ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                    ("u", discr.convert_volume(op.u(fields), kind="numpy")),
    
                                    #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                    #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                    #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                    #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
    
                                    #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                    #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                    #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                    ],
                                expressions=[
                                    #("diff_rho", "rho-true_rho"),
                                    #("diff_e", "e-true_e"),
                                    #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
    
                                    ("p", "0.4*(e- 0.5*(rho_u*u))"),
                                    ],
                                time=t, step=step
                                )
                        visf.close()
    
                    fields = stepper(fields, t, dt, rhs)
    
                true_fields = vortex.volume_interpolant(t, discr)
                l2_error = discr.norm(fields-true_fields)
                l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
                l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
                l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
                l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))
    
                eoc_rec.add_data_point(order, l2_error_rho)
    
    Andreas Klöckner's avatar
    Andreas Klöckner committed
                print()
                print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))
    
    
                logmgr.set_constant("l2_error", l2_error)
                logmgr.set_constant("l2_error_rho", l2_error_rho)
                logmgr.set_constant("l2_error_e", l2_error_e)
                logmgr.set_constant("l2_error_rhou", l2_error_rhou)
                logmgr.set_constant("l2_error_u", l2_error_u)
                logmgr.set_constant("refinement", refine)
    
            finally:
                if write_output:
                    vis.close()
    
                logmgr.close()
                discr.close()
    
        # after order loop
        #assert eoc_rec.estimate_order_of_convergence()[0,1] > 6
    
    
    
    
    if __name__ == "__main__":
        main()
    
    
    
    # entry points for py.test ----------------------------------------------------
    from pytools.test import mark_test
    @mark_test.long
    def test_euler_vortex():
        main(write_output=False)