__copyright__ = "Copyright (C) 2008 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import division from __future__ import absolute_import from __future__ import print_function import numpy import numpy.linalg as la # modifies isentropic vortex solution so that rho->Arho, P->A^gamma rho^gamma # this will be analytic solution if appropriate source terms are added # to the RHS. coded for vel_x=1, vel_y=0 class Vortex: def __init__(self, beta, gamma, center, velocity, densityA): self.beta = beta self.gamma = gamma self.center = numpy.asarray(center) self.velocity = numpy.asarray(velocity) self.densityA = densityA def __call__(self, t, x_vec): vortex_loc = self.center + t*self.velocity # coordinates relative to vortex center x_rel = x_vec[0] - vortex_loc[0] y_rel = x_vec[1] - vortex_loc[1] # Y.C. Zhou, G.W. Wei / Journal of Computational Physics 189 (2003) 159 # also JSH/TW Nodal DG Methods, p. 209 from math import pi r = numpy.sqrt(x_rel**2+y_rel**2) expterm = self.beta*numpy.exp(1-r**2) u = self.velocity[0] - expterm*y_rel/(2*pi) v = self.velocity[1] + expterm*x_rel/(2*pi) rho = self.densityA*(1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1)) p = rho**self.gamma e = p/(self.gamma-1) + rho/2*(u**2+v**2) from grudge.tools import join_fields return join_fields(rho, e, rho*u, rho*v) def volume_interpolant(self, t, discr): return discr.convert_volume( self(t, discr.nodes.T .astype(discr.default_scalar_type)), kind=discr.compute_kind) def boundary_interpolant(self, t, discr, tag): return discr.convert_boundary( self(t, discr.get_boundary(tag).nodes.T .astype(discr.default_scalar_type)), tag=tag, kind=discr.compute_kind) class SourceTerms: def __init__(self, beta, gamma, center, velocity, densityA): self.beta = beta self.gamma = gamma self.center = numpy.asarray(center) self.velocity = numpy.asarray(velocity) self.densityA = densityA def __call__(self,t,x_vec,q): vortex_loc = self.center + t*self.velocity # coordinates relative to vortex center x_rel = x_vec[0] - vortex_loc[0] y_rel = x_vec[1] - vortex_loc[1] # sources written in terms of A=1.0 solution # (standard isentropic vortex) from math import pi r = numpy.sqrt(x_rel**2+y_rel**2) expterm = self.beta*numpy.exp(1-r**2) u = self.velocity[0] - expterm*y_rel/(2*pi) v = self.velocity[1] + expterm*x_rel/(2*pi) rho = (1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1)) p = rho**self.gamma #computed necessary derivatives expterm_t = 2*expterm*x_rel expterm_x = -2*expterm*x_rel expterm_y = -2*expterm*y_rel u_x = -expterm*y_rel/(2*pi)*(-2*x_rel) v_y = expterm*x_rel/(2*pi)*(-2*y_rel) #derivatives for rho (A=1) facG=self.gamma-1 rho_t = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \ (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_t) rho_x = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \ (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_x) rho_y = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \ (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_y) #derivatives for rho (A=1) to the power of gamma rho_gamma_t = self.gamma*rho**(self.gamma-1)*rho_t rho_gamma_x = self.gamma*rho**(self.gamma-1)*rho_x rho_gamma_y = self.gamma*rho**(self.gamma-1)*rho_y factorA=self.densityA**self.gamma-self.densityA #construct source terms source_rho = x_vec[0]-x_vec[0] source_e = (factorA/(self.gamma-1))*(rho_gamma_t + self.gamma*(u_x*rho**self.gamma+u*rho_gamma_x)+ \ self.gamma*(v_y*rho**self.gamma+v*rho_gamma_y)) source_rhou = factorA*rho_gamma_x source_rhov = factorA*rho_gamma_y from grudge.tools import join_fields return join_fields(source_rho, source_e, source_rhou, source_rhov, x_vec[0]-x_vec[0]) def volume_interpolant(self,t,q,discr): return discr.convert_volume( self(t,discr.nodes.T,q), kind=discr.compute_kind) def main(write_output=True): from grudge.backends import guess_run_context rcon = guess_run_context( #["cuda"] ) gamma = 1.4 # at A=1 we have case of isentropic vortex, source terms # arise for other values densityA = 2.0 from grudge.tools import EOCRecorder, to_obj_array eoc_rec = EOCRecorder() if rcon.is_head_rank: from grudge.mesh import \ make_rect_mesh, \ make_centered_regular_rect_mesh refine = 1 mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9), post_refine_factor=refine) mesh_data = rcon.distribute_mesh(mesh) else: mesh_data = rcon.receive_mesh() for order in [4,5]: discr = rcon.make_discretization(mesh_data, order=order, debug=[#"cuda_no_plan", #"print_op_code" ], default_scalar_type=numpy.float64) from grudge.visualization import SiloVisualizer, VtkVisualizer #vis = VtkVisualizer(discr, rcon, "vortex-%d" % order) vis = SiloVisualizer(discr, rcon) vortex = Vortex(beta=5, gamma=gamma, center=[5,0], velocity=[1,0], densityA=densityA) fields = vortex.volume_interpolant(0, discr) sources=SourceTerms(beta=5, gamma=gamma, center=[5,0], velocity=[1,0], densityA=densityA) from grudge.models.gas_dynamics import ( GasDynamicsOperator, GammaLawEOS) from grudge.mesh import BTAG_ALL op = GasDynamicsOperator(dimensions=2, mu=0.0, prandtl=0.72, spec_gas_const=287.1, equation_of_state=GammaLawEOS(vortex.gamma), bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex, inflow_tag=BTAG_ALL, source=sources) euler_ex = op.bind(discr) max_eigval = [0] def rhs(t, q): ode_rhs, speed = euler_ex(t, q) max_eigval[0] = speed return ode_rhs rhs(0, fields) if rcon.is_head_rank: print("---------------------------------------------") print("order %d" % order) print("---------------------------------------------") print("#elements=", len(mesh.elements)) # limiter setup ------------------------------------------------------- from grudge.models.gas_dynamics import SlopeLimiter1NEuler limiter = SlopeLimiter1NEuler(discr, gamma, 2, op) # time stepper -------------------------------------------------------- from grudge.timestep import SSPRK3TimeStepper, RK4TimeStepper #stepper = SSPRK3TimeStepper(limiter=limiter) #stepper = SSPRK3TimeStepper() stepper = RK4TimeStepper() # diagnostics setup --------------------------------------------------- from pytools.log import LogManager, add_general_quantities, \ add_simulation_quantities, add_run_info if write_output: log_file_name = "euler-%d.dat" % order else: log_file_name = None logmgr = LogManager(log_file_name, "w", rcon.communicator) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) discr.add_instrumentation(logmgr) stepper.add_instrumentation(logmgr) logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"]) # timestep loop ------------------------------------------------------- t = 0 #fields = limiter(fields) try: from grudge.timestep import times_and_steps step_it = times_and_steps( final_time=.1, #max_steps=500, logmgr=logmgr, max_dt_getter=lambda t: 0.4*op.estimate_timestep(discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0])) for step, t, dt in step_it: if step % 1 == 0 and write_output: #if False: visf = vis.make_file("vortex-%d-%04d" % (order, step)) true_fields = vortex.volume_interpolant(t, discr) #rhs_fields = rhs(t, fields) from pyvisfile.silo import DB_VARTYPE_VECTOR vis.add_data(visf, [ ("rho", discr.convert_volume(op.rho(fields), kind="numpy")), ("e", discr.convert_volume(op.e(fields), kind="numpy")), ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")), ("u", discr.convert_volume(op.u(fields), kind="numpy")), #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")), #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")), #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")), #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")), #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")), #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")), #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")), ], expressions=[ #("diff_rho", "rho-true_rho"), #("diff_e", "e-true_e"), #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR), ("p", "0.4*(e- 0.5*(rho_u*u))"), ], time=t, step=step ) visf.close() fields = stepper(fields, t, dt, rhs) true_fields = vortex.volume_interpolant(t, discr) l2_error = discr.norm(fields-true_fields) l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields)) l2_error_e = discr.norm(op.e(fields)-op.e(true_fields)) l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields)) l2_error_u = discr.norm(op.u(fields)-op.u(true_fields)) eoc_rec.add_data_point(order, l2_error_rho) print() print(eoc_rec.pretty_print("P.Deg.", "L2 Error")) logmgr.set_constant("l2_error", l2_error) logmgr.set_constant("l2_error_rho", l2_error_rho) logmgr.set_constant("l2_error_e", l2_error_e) logmgr.set_constant("l2_error_rhou", l2_error_rhou) logmgr.set_constant("l2_error_u", l2_error_u) logmgr.set_constant("refinement", refine) finally: if write_output: vis.close() logmgr.close() discr.close() # after order loop #assert eoc_rec.estimate_order_of_convergence()[0,1] > 6 if __name__ == "__main__": main() # entry points for py.test ---------------------------------------------------- from pytools.test import mark_test @mark_test.long def test_euler_vortex(): main(write_output=False)